IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/10753.html
   My bibliography  Save this paper

Optimal Scaling of Interaction Effects in Generalized Linear Models

Author

Listed:
  • van Rosmalen, J.M.
  • Koning, A.J.
  • Groenen, P.J.F.

Abstract

Multiplicative interaction models, such as Goodman's RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are only suitable for data sets with two or three predictor variables. Here, we discuss an optimal scaling model for analyzing the content of interaction effects in generalized linear models with any number of categorical predictor variables. This model, which we call the optimal scaling of interactions (OSI) model, is a parsimonious, one-dimensional multiplicative interaction model. We discuss how the model can be used to visually interpret the interaction effects. Two empirical data sets are used to show how the results of the model can be applied and interpreted. Finally, several multidimensional extensions of the one-dimensional model are explored.

Suggested Citation

  • van Rosmalen, J.M. & Koning, A.J. & Groenen, P.J.F., 2007. "Optimal Scaling of Interaction Effects in Generalized Linear Models," Econometric Institute Research Papers EI 2007-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:10753
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/10753/EI%20rapport%202007-44.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carolyn Anderson, 1996. "The analysis of three-way contingency tables by three-mode association models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 465-483, September.
    2. Forrest Young & Jan Leeuw & Yoshio Takane, 1976. "Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 505-529, December.
    3. Siciliano, Roberta & Mooijaart, Ab, 1997. "Three-factor association models for three-way contingency tables," Computational Statistics & Data Analysis, Elsevier, vol. 24(3), pages 337-356, May.
    4. Forrest Young, 1981. "Quantitative analysis of qualitative data," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 357-388, December.
    5. Jan Leeuw & Forrest Young & Yoshio Takane, 1976. "Additive structure in qualitative data: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 471-503, December.
    6. Vartan Choulakian, 1996. "Generalized bilinear models," Psychometrika, Springer;The Psychometric Society, vol. 61(2), pages 271-283, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seohee Park & Seongeun Kim & Ji Hoon Ryoo, 2020. "Latent Class Regression Utilizing Fuzzy Clusterwise Generalized Structured Component Analysis," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    2. John C. Gower & Sugnet Gardner-Lubbe & Niel J. Le Roux, 2018. "Interaction: Fisher’s Optimal Scores Revisited," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 92-112, March.
    3. Raymond Sin-Kwok Wong, 2001. "Multidimensional Association Models," Sociological Methods & Research, , vol. 30(2), pages 197-240, November.
    4. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    5. Hye Won Suk & Heungsun Hwang, 2016. "Functional Generalized Structured Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 940-968, December.
    6. Michio Yamamoto, 2012. "Clustering of functional data in a low-dimensional subspace," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 219-247, October.
    7. Vittadini, Giorgio & Lovaglio, Pietro Giorgio, 2007. "Evaluation of the Dagum-Slottje method to estimate household human capital," Structural Change and Economic Dynamics, Elsevier, vol. 18(2), pages 270-278, June.
    8. Takane, Yoshio, 2016. "My Early Interactions with Jan and Some of His Lost Papers," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i07).
    9. Zhou, Lixing & Takane, Yoshio & Hwang, Heungsun, 2016. "Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) with applications to the analysis of effective connectivity in functional neuroimaging data," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 93-109.
    10. Groenen, P.J.F. & Nalbantov, G.I. & Bioch, J.C., 2007. "SVM-Maj: a majorization approach to linear support vector machines with different hinge errors," Econometric Institute Research Papers EI 2007-49, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Hansohm, Jürgen, 2004. "Algorithmus und Programm zur Bestimmung der monotonen Kleinst-Quadrate Lösung bei partiellen Präordnungen," Arbeitspapiere zur mathematischen Wirtschaftsforschung 187, Universität Augsburg, Institut für Statistik und Mathematische Wirtschaftstheorie.
    12. Maria Giovanna Onorati & Francesco D. d’Ovidio & Laura Antonucci, 2017. "Cultural displacement as a lever to global-ready student profiles: results from a longitudinal study on International Lifelong Learning Programs (LLP)," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 545-563, March.
    13. Heungsun Hwang & Moon-Ho Ho & Jonathan Lee, 2010. "Generalized Structured Component Analysis with Latent Interactions," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 228-242, June.
    14. Bolton, Patrick & Li, Tao & Ravina, Enrichetta & Rosenthal, Howard, 2020. "Investor ideology," Journal of Financial Economics, Elsevier, vol. 137(2), pages 320-352.
    15. Lukáš Sobíšek & Hana Řezanková, 2011. "Comparison of Dimensionality Reduction Methods Applied to Ordinal Variables [Srovnání metod pro redukci dimenzionality aplikovaných na ordinální proměnné]," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2011(1), pages 3-19.
    16. Florian Pargent & Florian Pfisterer & Janek Thomas & Bernd Bischl, 2022. "Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features," Computational Statistics, Springer, vol. 37(5), pages 2671-2692, November.
    17. John C. Gower & Niël J. Le Roux & Sugnet Gardner-Lubbe, 2022. "Properties of individual differences scaling and its interpretation," Statistical Papers, Springer, vol. 63(4), pages 1221-1245, August.
    18. Berry, Michael W. & Browne, Murray & Langville, Amy N. & Pauca, V. Paul & Plemmons, Robert J., 2007. "Algorithms and applications for approximate nonnegative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 155-173, September.
    19. Gyeongcheol Cho & Heungsun Hwang & Marko Sarstedt & Christian M. Ringle, 2020. "Cutoff criteria for overall model fit indexes in generalized structured component analysis," Journal of Marketing Analytics, Palgrave Macmillan, vol. 8(4), pages 189-202, December.
    20. Kwanghee Jung & Yoshio Takane & Heungsun Hwang & Todd Woodward, 2012. "Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 827-848, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:10753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.