IDEAS home Printed from https://ideas.repec.org/p/ema/worpap/2022-23.html
   My bibliography  Save this paper

Pooling for First and Last Mile: Integrating Carpooling and Transit

Author

Listed:
  • Andrea Araldo
  • Andre de Palma
  • Souhila Arib
  • Vincent Gauthier

    (Université de Cergy-Pontoise, THEMA)

Abstract

While carpooling is widely adopted for long travels, it is by construction inefficient for daily commuting, where it is difficult to match drivers and riders, sharing similar origin, destination and time. To overcome this limitation, we present an Integrated system, which integrates carpooling into transit, in the line of the philosophy of Mobility as a Service. Carpooling acts as feeder to transit and transit stations act as consolidation points, where trips of riders and drivers meet, increasing potential matching. We present algorithms to construct multimodal rider trips (including transit and carpooling legs) and driver detours. Simulation shows that our Integrated system increases transit ridership and reduces auto-dependency, with respect to current practice, in which carpooling and transit are operated separately. Indeed, the Integrated system decreases the number of riders who are left with no feasible travel option and would thus be forced to use private cars. The simulation code is available as open source.

Suggested Citation

  • Andrea Araldo & Andre de Palma & Souhila Arib & Vincent Gauthier, 2022. "Pooling for First and Last Mile: Integrating Carpooling and Transit," THEMA Working Papers 2022-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  • Handle: RePEc:ema:worpap:2022-23
    as

    Download full text from publisher

    File URL: http://thema.u-cergy.fr/IMG/pdf/2022-23.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    2. Boeing, Geoff, 2019. "The Morphology and Circuity of Walkable and Drivable Street Networks," SocArXiv edj2s, Center for Open Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amirhesam Badeanlou & Andrea Araldo & Marco Diana & Vincent Gauthier, 2022. "Equity Scores for Public Transit Lines from Open-Data and Accessibility Measures," Papers 2210.00128, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Abastante & Isabella M. Lami & Luigi La Riccia & Marika Gaballo, 2020. "Supporting Resilient Urban Planning through Walkability Assessment," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    2. Senlai Zhu & Hantao Yu & Congjun Fan, 2024. "Travel Plan Sharing and Regulation for Managing Traffic Bottleneck Based on Blockchain Technology," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
    3. Mohammad Anwar Alattar & Caitlin Cottrill & Mark Beecroft, 2021. "Sources and Applications of Emerging Active Travel Data: A Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    4. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    5. Zhehao Zhang & Thomas Fisher & Gang Feng, 2020. "Assessing the Rationality and Walkability of Campus Layouts," Sustainability, MDPI, vol. 12(23), pages 1-21, December.
    6. Saxena, Aditya & Gupta, Vallary, 2023. "Carpooling: Who is closest to adopting it? An investigation into the potential car-poolers among private vehicle users: A case of a developing country, India," Transport Policy, Elsevier, vol. 135(C), pages 11-20.
    7. Wenyuan Zhou & Xuanrong Li & Zhenguo Shi & Bingjie Yang & Dongxu Chen, 2023. "Impact of Carpooling under Mobile Internet on Travel Mode Choices and Urban Traffic Volume: The Case of China," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    8. Yuan, Fangfang & Wang, Xiaolei & Chen, Zhibin, 2024. "Assessing the impact of ride-sourcing vehicles on HOV-lane efficacy and management strategies," Transport Policy, Elsevier, vol. 150(C), pages 35-52.
    9. Jadwiga Biegańska & Elżbieta Grzelak-Kostulska & Michał Adam Kwiatkowski, 2021. "A Typology of Attitudes towards the E-Bike against the Background of the Traditional Bicycle and the Car," Energies, MDPI, vol. 14(24), pages 1-21, December.
    10. Padraig Corcoran & Rhyd Lewis, 2023. "A navigability entropy model for street networks," Environment and Planning B, , vol. 50(8), pages 2171-2186, October.
    11. Perez, Yuri & Pereira, Fabio Henrique, 2021. "Simulation of traffic light disruptions in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    12. Yong Zhang & Chao Jiang & Sheng Chen & Yuanyuan Zhang & Hui Shi & Bin Chen & Lingfeng Mao, 2021. "Effects of Landscape Attributes on Campuses Bird Species Richness and Diversity, Implications for Eco-Friendly Urban Planning," Sustainability, MDPI, vol. 13(10), pages 1-11, May.
    13. Yang, Wenyue & Chen, Huiling & Wang, Wulin, 2020. "The path and time efficiency of residents' trips of different purposes with different travel modes: An empirical study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 88(C).
    14. Crispin H. V. Cooper & Ian Harvey & Scott Orford & Alain J. F. Chiaradia, 2021. "Using multiple hybrid spatial design network analysis to predict longitudinal effect of a major city centre redevelopment on pedestrian flows," Transportation, Springer, vol. 48(2), pages 643-672, April.
    15. Yat Yen & Pengjun Zhao & Muhammad T Sohail, 2021. "The morphology and circuity of walkable, bikeable, and drivable street networks in Phnom Penh, Cambodia," Environment and Planning B, , vol. 48(1), pages 169-185, January.
    16. R. Lamotte & A. de Palma & N. Geroliminis, 2020. "Impacts of Metering-Based Dynamic Priority Schemes," THEMA Working Papers 2020-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    17. Cohen, Maxime C. & Jacquillat, Alexandre & Ratzon, Avia & Sasson, Roy, 2022. "The impact of high-occupancy vehicle lanes on carpooling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 186-206.
    18. Hu, Shichun & Dessouky, Maged M. & Uhan, Nelson A. & Vayanos, Phebe, 2021. "Cost-sharing mechanism design for ride-sharing," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 410-434.
    19. Zipeng Zhang & Ning Zhang, 2021. "The Morning Commute Problem with Ridesharing When Meet Stochastic Bottleneck," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    20. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.

    More about this item

    Keywords

    Carpooling; Ride-sharing; Mobility as a Service; Transit; Simulation; Multimodal Transportation.;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ema:worpap:2022-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefania Marcassa (email available below). General contact details of provider: https://edirc.repec.org/data/themafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.