IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v179y2020ics0047259x20302219.html
   My bibliography  Save this article

Testing normality of data on a multivariate grid

Author

Listed:
  • Horváth, Lajos
  • Kokoszka, Piotr
  • Wang, Shixuan

Abstract

We propose a significance test to determine if data on a regular d-dimensional grid can be assumed to be a realization of Gaussian process. By accounting for the spatial dependence of the observations, we derive statistics analogous to sample skewness and kurtosis. We show that the sum of squares of these two statistics converges to a chi-square distribution with two degrees of freedom. This leads to a readily applicable test. We examine two variants of the test, which are specified by two ways the spatial dependence is estimated. We provide a careful theoretical analysis, which justifies the validity of the test for a broad class of stationary random fields. A simulation study compares several implementations. While some implementations perform slightly better than others, all of them exhibit very good size control and high power, even in relatively small samples. An application to a comprehensive data set of sea surface temperatures further illustrates the usefulness of the test.

Suggested Citation

  • Horváth, Lajos & Kokoszka, Piotr & Wang, Shixuan, 2020. "Testing normality of data on a multivariate grid," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:jmvana:v:179:y:2020:i:c:s0047259x20302219
    DOI: 10.1016/j.jmva.2020.104640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X20302219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandra M. Schmidt & Anthony O'Hagan, 2003. "Bayesian inference for non‐stationary spatial covariance structure via spatial deformations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 743-758, August.
    2. J. P. Royston, 1983. "Some Techniques for Assessing Multivarate Normality Based on the Shapiro‐Wilk W," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(2), pages 121-133, June.
    3. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    4. French, Joshua & Kokoszka, Piotr & Stoev, Stilian & Hall, Lauren, 2019. "Quantifying the risk of heat waves using extreme value theory and spatio-temporal functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 176-193.
    5. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    6. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    7. Matthias Katzfuss, 2017. "A Multi-Resolution Approximation for Massive Spatial Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 201-214, January.
    8. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    9. Paciorek, Christopher J. & Lipshitz, Benjamin & Zhuo, Wei & Prabhat, . & Kaufman, Cari G. G. & Thomas, Rollin C., 2015. "Parallelizing Gaussian Process Calculations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i10).
    10. J. P. Royston, 1982. "The W Test for Normality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 176-180, June.
    11. Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Górecki & Lajos Horváth & Piotr Kokoszka, 2020. "Tests of Normality of Functional Data," International Statistical Review, International Statistical Institute, vol. 88(3), pages 677-697, December.
    2. Manuel Denzer & Constantin Weiser, 2021. "Beyond F-statistic - A General Approach for Assessing Weak Identification," Working Papers 2107, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    3. Chowdhury, Joydeep & Dutta, Subhajit & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2022. "Sub-dimensional Mardia measures of multivariate skewness and kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    4. Psaradakis, Zacharias & Vávra, Marián, 2017. "A distance test of normality for a wide class of stationary processes," Econometrics and Statistics, Elsevier, vol. 2(C), pages 50-60.
    5. Berkowitz, J. & Birgean, I. & Kilian, L., 1999. "On the Finite-Sample Accuracy of Nonparametric Resampling Algorithms for Economic Time Series," Papers 99-01, Michigan - Center for Research on Economic & Social Theory.
    6. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    7. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    8. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    9. Martha Misas A. & Carlos Esteban Posada P & Diego Mauricio Vásquez E, 2003. "¿Está determinado el nivel de precios por las expectativas de dinero y producto en Colombia?," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 21(43), pages 8-31, June.
    10. Ekaterini Panopoulou, 2005. "A Resolution of the Fisher Effect Puzzle: A Comparison of Estimators," The Institute for International Integration Studies Discussion Paper Series iiisdp067, IIIS.
    11. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    12. Wouter J. Den Haan & Andrew T. Levin, 1995. "Inferences from parametric and non-parametric covariance matrix estimation procedures," International Finance Discussion Papers 504, Board of Governors of the Federal Reserve System (U.S.).
    13. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    14. Nikolay Gospodinov & Ian Irvine, 2005. "A ‘long march’ perspective on tobacco use in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 366-393, May.
    15. Daiki Maki, 2008. "The Performance of Variance Ratio Unit Root Tests Under Nonlinear Stationary TAR and STAR Processes: Evidence from Monte Carlo Simulations and Applications," Computational Economics, Springer;Society for Computational Economics, vol. 31(1), pages 77-94, February.
    16. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
    17. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    18. West, Kenneth D & McCracken, Michael W, 1998. "Regression-Based Tests of Predictive Ability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
    19. Héctor F. Salazar-Núñez & Francisco Venegas-Martínez & José Antonio Lozano-Díez, 2022. "Assessing the interdependence among renewable and non-renewable energies, economic growth, and CO2 emissions in Mexico," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12850-12866, November.
    20. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    21. Martins, Luis F. & Gabriel, Vasco J., 2009. "New Keynesian Phillips Curves and potential identification failures: A Generalized Empirical Likelihood analysis," Journal of Macroeconomics, Elsevier, vol. 31(4), pages 561-571, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:179:y:2020:i:c:s0047259x20302219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.