IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/6815.html
   My bibliography  Save this paper

A method of moments estimator for semiparametric index models

Author

Listed:
  • Donkers, Bas
  • Schafgans, Marcia M. A.

Abstract

We propose an easy to use derivative based two-step estimation procedure for semi-parametric index models. In the first step various functionals involving the derivatives of the unknown function are estimated using nonparametric kernel estimators. The functionals used provide moment conditions for the parameters of interest, which are used in the second step within a method-of-moments framework to estimate the parameters of interest. The estimator is shown to be root N consistent and asymptotically normal. We extend the procedure to multiple equation models. Our identification conditions and estimation framework provide natural tests for the number of indices in the model. In addition we discuss tests of separability, additivity, and linearity of the influence of the indices.

Suggested Citation

  • Donkers, Bas & Schafgans, Marcia M. A., 2005. "A method of moments estimator for semiparametric index models," LSE Research Online Documents on Economics 6815, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:6815
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/6815/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. P. M. Robinson, 1989. "Hypothesis Testing in Semiparametric and Nonparametric Models for Econometric Time Series," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 56(4), pages 511-534.
    2. Lavergne, Pascal & Vuong, Quang H, 1996. "Nonparametric Selection of Regressors: The Nonnested Case," Econometrica, Econometric Society, vol. 64(1), pages 207-219, January.
    3. Phillips, Peter C B, 1994. "Some Exact Distribution Theory for Maximum Likelihood Estimators of Cointegrating Coefficients in Error Correction Models," Econometrica, Econometric Society, vol. 62(1), pages 73-93, January.
    4. Serge Darolles & Christian Gourieroux & Joanna Jasiak, 2001. "Compound Autoregressive Models," Working Papers 2001-21, Center for Research in Economics and Statistics.
    5. Lee, Lung-fei, 1995. "Semiparametric maximum likelihood estimation of polychotomous and sequential choice models," Journal of Econometrics, Elsevier, vol. 65(2), pages 381-428, February.
    6. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    7. Picone, Gabriel A. & Butler, J.S., 2000. "Semiparametric Estimation Of Multiple Equation Models," Econometric Theory, Cambridge University Press, vol. 16(4), pages 551-575, August.
    8. P. Lavergne & Q.H. Vuong, 1996. "Nonparametric selection of regressors : the nonnested case [[Sélection non paramétrique de régresseurs : le cas de régressions non emboîtées]]," Post-Print hal-02689500, HAL.
    9. Hardle W. & Sperlich S. & Spokoiny V., 2001. "Structural Tests in Additive Regression," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1333-1347, December.
    10. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    11. Donkers, A.C.D. & Schafgans, M., 2003. "A derivative based estimator for semiparametric index models," Econometric Institute Research Papers EI 2003-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Delecroix, Michel & Härdle, Wolfgang & Hristache, Marian, 2003. "Efficient estimation in conditional single-index regression," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 213-226, August.
    13. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521370905.
    14. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    15. Whitney K. Newey, 2004. "Efficient Semiparametric Estimation via Moment Restrictions," Econometrica, Econometric Society, vol. 72(6), pages 1877-1897, November.
    16. Lewbel, Arthur, 1997. "Semiparametric Estimation of Location and Other Discrete Choice Moments," Econometric Theory, Cambridge University Press, vol. 13(1), pages 32-51, February.
    17. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521424318.
    18. Newey, Whitney K & Stoker, Thomas M, 1993. "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, Econometric Society, vol. 61(5), pages 1199-1223, September.
    19. Thomas M. Stoker, 1989. "Tests of Additive Derivative Constraints," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 56(4), pages 535-552.
    20. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victoria Zinde-Walsh & Marcia M.A. Schafgans, 2007. "Robust Average Derivative Estimation," Departmental Working Papers 2007-12, McGill University, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Donkers, A.C.D. & Schafgans, M., 2003. "A derivative based estimator for semiparametric index models," Econometric Institute Research Papers EI 2003-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    4. White, Halbert & Hong, Yongmiao, 1999. "M-Testing Using Finite and Infinite Dimensional Parameter Estimators," University of California at San Diego, Economics Working Paper Series qt9qz123ng, Department of Economics, UC San Diego.
    5. Marcia M Schafgans & Victoria Zinde-Walshyz, 2008. "Smoothness Adaptive AverageDerivative Estimation," STICERD - Econometrics Paper Series 529, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. SCHAFGANS, Marcia M.A. & ZINDE-WALSH, Victoria, 2007. "Robust Average Derivative Estimation," Cahiers de recherche 12-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Lewbel, Arthur & Lin, Xirong, 2022. "Identification of semiparametric model coefficients, with an application to collective households," Journal of Econometrics, Elsevier, vol. 226(2), pages 205-223.
    9. Komunjer, Ivana & Vuong, Quang, 2010. "Efficient estimation in dynamic conditional quantile models," Journal of Econometrics, Elsevier, vol. 157(2), pages 272-285, August.
    10. repec:hum:wpaper:sfb649dp2009-028 is not listed on IDEAS
    11. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
    12. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    13. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    14. Temel, Tugrul T., 2001. "A Nonparametric Hypothesis Test Via The Bootstrap Resampling," 2001 Annual meeting, August 5-8, Chicago, IL 20600, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    16. Kotlyarova, Yulia & Schafgans, Marcia M. A. & Zinde‐Walsh, Victoria, 2011. "Adapting kernel estimation to uncertain smoothness," LSE Research Online Documents on Economics 42015, London School of Economics and Political Science, LSE Library.
    17. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    18. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    19. Aradillas-Lopez, Andres, 2010. "Semiparametric estimation of a simultaneous game with incomplete information," Journal of Econometrics, Elsevier, vol. 157(2), pages 409-431, August.
    20. Escanciano, Juan Carlos & Song, Kyungchul, 2010. "Testing single-index restrictions with a focus on average derivatives," Journal of Econometrics, Elsevier, vol. 156(2), pages 377-391, June.
    21. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.

    More about this item

    Keywords

    semiparametric estimation; multiple index models; average derivative functionals; generalized methods of moments estimator; rank testing;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:6815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.