IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v30y2014i01p176-200_00.html
   My bibliography  Save this article

Small Bandwidth Asymptotics For Density-Weighted Average Derivatives

Author

Listed:
  • Cattaneo, Matias D.
  • Crump, Richard K.
  • Jansson, Michael

Abstract

This paper proposes (apparently) novel standard error formulas for the density-weighted average derivative estimator of Powell, Stock, and Stoker (Econometrica 57, 1989). Asymptotic validity of the standard errors developed in this paper does not require the use of higher-order kernels, and the standard errors are “robust” in the sense that they accommodate (but do not require) bandwidths that are smaller than those for which conventional standard errors are valid. Moreover, the results of a Monte Carlo experiment suggest that the finite sample coverage rates of confidence intervals constructed using the standard errors developed in this papercoincide (approximately) with the nominal coverage rates across a nontrivial range of bandwidths.

Suggested Citation

  • Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2014. "Small Bandwidth Asymptotics For Density-Weighted Average Derivatives," Econometric Theory, Cambridge University Press, vol. 30(1), pages 176-200, February.
  • Handle: RePEc:cup:etheor:v:30:y:2014:i:01:p:176-200_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466613000169/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
    2. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(2), pages 1-21, June.
    3. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    4. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    5. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    6. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1350-1366, December.
    7. Yoshihiko Nishiyama & Peter M. Robinson, 2005. "The Bootstrap and the Edgeworth Correction for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 73(3), pages 903-948, May.
    8. Y. Nishiyama & P. M. Robinson, 2000. "Edgeworth Expansions for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 68(4), pages 931-980, July.
    9. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    10. Powell, James L. & Stoker, Thomas M., 1996. "Optimal bandwidth choice for density-weighted averages," Journal of Econometrics, Elsevier, vol. 75(2), pages 291-316, December.
    11. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    12. Whitney K. Newey & Fushing Hsieh & James M. Robins, 2004. "Twicing Kernels and a Small Bias Property of Semiparametric Estimators," Econometrica, Econometric Society, vol. 72(3), pages 947-962, May.
    13. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, January.
    14. Hsiao,Cheng & Morimune,Kimio & Powell,James L. (ed.), 2001. "Nonlinear Statistical Modeling," Cambridge Books, Cambridge University Press, number 9780521662468, January.
    15. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2010. "Robust Data-Driven Inference for Density-Weighted Average Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1070-1083.
    16. Newey, Whitney K & Stoker, Thomas M, 1993. "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, Econometric Society, vol. 61(5), pages 1199-1223, September.
    17. Andres Aradillas-Lopez & Bo E. Honoré & James L. Powell, 2007. "Pairwise Difference Estimation With Nonparametric Control Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1119-1158, November.
    18. Robinson, P M, 1995. "The Normal Approximation for Semiparametric Averaged Derivatives," Econometrica, Econometric Society, vol. 63(3), pages 667-680, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    2. Matsushita, Yukitoshi & Otsu, Taisuke, 2020. "Jackknife empirical likelihood: small bandwidth, sparse network and high-dimension asymptotic," LSE Research Online Documents on Economics 106488, London School of Economics and Political Science, LSE Library.
    3. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2010. "Robust Data-Driven Inference for Density-Weighted Average Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1070-1083.
    4. Yulia Kotlyarova & Marcia M. A. Schafgans & Victoria Zinde-Walsh, 2021. "Rates of Expansions for Functional Estimators," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 121-139, December.
    5. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    6. Bryan S. Graham, 2019. "Network Data," NBER Working Papers 26577, National Bureau of Economic Research, Inc.
    7. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2021. "Average Derivative Estimation Under Measurement Error," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1004-1033, October.
    8. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Bryan S. Graham, 2019. "Dyadic Regression," Papers 1908.09029, arXiv.org.
    10. Graham, Bryan S. & Niu, Fengshi & Powell, James L., 2024. "Kernel density estimation for undirected dyadic data," Journal of Econometrics, Elsevier, vol. 240(2).
    11. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    12. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    13. Jun, Sung Jae & Pinkse, Joris & Wan, Yuanyuan, 2015. "Classical Laplace estimation for n3-consistent estimators: Improved convergence rates and rate-adaptive inference," Journal of Econometrics, Elsevier, vol. 187(1), pages 201-216.
    14. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
    15. Yukitoshi Matsushita & Taisuke Otsu, 2019. "Jackknife, small bandwidth and high-dimensional asymptotics," STICERD - Econometrics Paper Series 605, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    16. Bryan S. Graham, 2020. "Sparse network asymptotics for logistic regression," Papers 2010.04703, arXiv.org.
    17. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
    18. Bryan S. Graham, 2019. "Network Data," CeMMAP working papers CWP71/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    2. Nishiyama, Y., 2004. "Minimum normal approximation error bandwidth selection for averaged derivatives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 53-61.
    3. Matias D. Cattaneo & Max H. Farrell & Michael Jansson & Ricardo Masini, 2022. "Higher-order Refinements of Small Bandwidth Asymptotics for Density-Weighted Average Derivative Estimators," Papers 2301.00277, arXiv.org, revised Feb 2024.
    4. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    5. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    6. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    7. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    8. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    9. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    10. Marcia M Schafgans & Victoria Zinde-Walshyz, 2008. "Smoothness Adaptive AverageDerivative Estimation," STICERD - Econometrics Paper Series 529, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    11. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2010. "Robust Data-Driven Inference for Density-Weighted Average Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1070-1083.
    12. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    13. Kristensen, Dennis, 2004. "Estimation in two classes of semiparametric diffusion models," LSE Research Online Documents on Economics 24739, London School of Economics and Political Science, LSE Library.
    14. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    15. Matsushita, Yukitoshi & Otsu, Taisuke, 2020. "Likelihood inference on semiparametric models with generated regressors," LSE Research Online Documents on Economics 102696, London School of Economics and Political Science, LSE Library.
    16. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
    18. SCHAFGANS, Marcia M.A. & ZINDE-WALSH, Victoria, 2007. "Robust Average Derivative Estimation," Cahiers de recherche 12-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    19. Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," SFB 649 Discussion Papers 2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:30:y:2014:i:01:p:176-200_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.