Direction estimation in single-index regressions
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xia, Yingcun & Härdle, Wolfgang Karl & Linton, Oliver, 2009.
"Optimal smoothing for a computationally and statistically efficient single index estimator,"
SFB 649 Discussion Papers
2009-028, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Wolfgang Härdle & Oliver Linton & Yingcun Xia, 2009. "Optimal Smoothing for a Computationallyand StatisticallyEfficient Single Index Estimator," STICERD - Econometrics Paper Series 537, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Hardle, Wolfgang & Xia, Yingcun & Linton, Oliver, 2009. "Optimal smoothing for a computationally and statistically efficient single index estimator," LSE Research Online Documents on Economics 58173, London School of Economics and Political Science, LSE Library.
- Zhong, Wei & Liu, Xi & Ma, Shuangge, 2018. "Variable selection and direction estimation for single-index models via DC-TGDR method," IRTG 1792 Discussion Papers 2018-050, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
- Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
- Iaci, Ross & Sriram, T.N., 2013. "Robust multivariate association and dimension reduction using density divergences," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 281-295.
- Tao, Chenyang & Feng, Jianfeng, 2017. "Canonical kernel dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 131-148.
- Iaci, Ross & Yin, Xiangrong & Zhu, Lixing, 2016. "The Dual Central Subspaces in dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 178-189.
- Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
- da Silva, Murilo & Sriram, T.N. & Ke, Yuan, 2023. "Dimension reduction in time series under the presence of conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- S. Yaser Samadi & Tharindu P. De Alwis, 2023. "Fourier Methods for Sufficient Dimension Reduction in Time Series," Papers 2312.02110, arXiv.org.
- Xiao‐Hua Zhou & Huazhen Lin & Eric Johnson, 2008. "Non‐parametric heteroscedastic transformation regression models for skewed data with an application to health care costs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 1029-1047, November.
- Lin, Wei & Kulasekera, K.B., 2010. "Testing the equality of linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1156-1167, May.
- Feng, Long & Zou, Changliang & Wang, Zhaojun, 2012. "Rank-based inference for the single-index model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 535-541.
- Zhang, Hongfan, 2018. "Quasi-likelihood estimation of the single index conditional variance model," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 58-72.
- Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- Li, Lexin, 2009. "Exploiting predictor domain information in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2665-2672, May.
- Tharindu P. De Alwis & S. Yaser Samadi, 2024. "Stacking-based neural network for nonlinear time series analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 901-924, July.
- Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
- Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:2:p:371-384. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.