IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v72y2014i2p169-183.html
   My bibliography  Save this article

Theory and applications of proper scoring rules

Author

Listed:
  • Alexander Dawid
  • Monica Musio

Abstract

A scoring rule $$S(x; q)$$ S ( x ; q ) provides a way of judging the quality of a quoted probability density $$q$$ q for a random variable $$X$$ X in the light of its outcome $$x$$ x . It is called proper if honesty is your best policy, i.e., when you believe $$X$$ X has density $$p$$ p , your expected score is optimised by the choice $$q=p$$ q = p . The most celebrated proper scoring rule is the logarithmic score, $$S(x; q)=-\log {q(x)}$$ S ( x ; q ) = - log q ( x ) : this is the only proper scoring rule that is local, in the sense of depending on the density function $$q$$ q only through its value at the observed value $$x$$ x . It is closely connected with likelihood inference, with communication theory, and with minimum description length model selection. However, every statistical decision problem induces a proper scoring rule, so there is a very wide variety of these. Many of them have additional interesting structure and properties. At a theoretical level, any proper scoring rule can be used as a foundational basis for the theory of subjective probability. At an applied level a proper scoring can be used to compare and improve probability forecasts, and, in a parametric setting, as an alternative tool for inference. In this article we give an overview of some uses of proper scoring rules in statistical inference, including frequentist estimation theory and Bayesian model selection with improper priors. Copyright Sapienza Università di Roma 2014

Suggested Citation

  • Alexander Dawid & Monica Musio, 2014. "Theory and applications of proper scoring rules," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 169-183, August.
  • Handle: RePEc:spr:metron:v:72:y:2014:i:2:p:169-183
    DOI: 10.1007/s40300-014-0039-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s40300-014-0039-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s40300-014-0039-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Dawid, 2007. "The geometry of proper scoring rules," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(1), pages 77-93, March.
    2. A. Dawid & Monica Musio, 2013. "Estimation of spatial processes using local scoring rules," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 173-179, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Braghieri, 2023. "Biased Decoding and the Foundations of Communication," CESifo Working Paper Series 10432, CESifo.
    2. Jonas R. Brehmer & Tilmann Gneiting, 2020. "Properization: constructing proper scoring rules via Bayes acts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 659-673, June.
    3. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    4. F. Giummolè & V. Mameli & E. Ruli & L. Ventura, 2019. "Objective Bayesian inference with proper scoring rules," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 728-755, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    2. F. Giummolè & V. Mameli & E. Ruli & L. Ventura, 2019. "Objective Bayesian inference with proper scoring rules," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 728-755, September.
    3. Jonas R. Brehmer & Tilmann Gneiting, 2020. "Properization: constructing proper scoring rules via Bayes acts," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 659-673, June.
    4. Emilio Zanetti Chini, 2018. "Forecaster’s utility and forecasts coherence," DEM Working Papers Series 145, University of Pavia, Department of Economics and Management.
    5. Takasu, Yuya & Yano, Keisuke & Komaki, Fumiyasu, 2018. "Scoring rules for statistical models on spheres," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 111-115.
    6. Fissler, Tobias & Pesenti, Silvana M., 2023. "Sensitivity measures based on scoring functions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1408-1423.
    7. D. J. Hand & C. Anagnostopoulos, 2023. "Notes on the H-measure of classifier performance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 109-124, March.
    8. Victor Richmond R. Jose & Robert F. Nau & Robert L. Winkler, 2008. "Scoring Rules, Generalized Entropy, and Utility Maximization," Operations Research, INFORMS, vol. 56(5), pages 1146-1157, October.
    9. Fang, Fang & Stinchcombe, Maxwell B. & Whinston, Andrew B., 2010. "Proper scoring rules with arbitrary value functions," Journal of Mathematical Economics, Elsevier, vol. 46(6), pages 1200-1210, November.
    10. Rybizki, Lydia, 2014. "Learning cost sensitive binary classification rules accounting for uncertain and unequal misclassification costs," FAU Discussion Papers in Economics 01/2014, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    11. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    12. Borgonovo, Emanuele & Hazen, Gordon B. & Jose, Victor Richmond R. & Plischke, Elmar, 2021. "Probabilistic sensitivity measures as information value," European Journal of Operational Research, Elsevier, vol. 289(2), pages 595-610.
    13. David J. Johnstone & Victor Richmond R. Jose & Robert L. Winkler, 2011. "Tailored Scoring Rules for Probabilities," Decision Analysis, INFORMS, vol. 8(4), pages 256-268, December.
    14. A. Dawid & Monica Musio, 2013. "Estimation of spatial processes using local scoring rules," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 173-179, April.
    15. Luca Braghieri, 2023. "Biased Decoding and the Foundations of Communication," CESifo Working Paper Series 10432, CESifo.
    16. Zachary J. Smith & J. Eric Bickel, 2020. "Additive Scoring Rules for Discrete Sample Spaces," Decision Analysis, INFORMS, vol. 17(2), pages 115-133, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:72:y:2014:i:2:p:169-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.