IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i2p489-496..html
   My bibliography  Save this article

On the marginal likelihood and cross-validation

Author

Listed:
  • E Fong
  • C C Holmes

Abstract

SummaryIn Bayesian statistics, the marginal likelihood, also known as the evidence, is used to evaluate model fit as it quantifies the joint probability of the data under the prior. In contrast, non-Bayesian models are typically compared using cross-validation on held-out data, either through $k$-fold partitioning or leave-$p$-out subsampling. We show that the marginal likelihood is formally equivalent to exhaustive leave-$p$-out crossvalidation averaged over all values of $p$ and all held-out test sets when using the log posterior predictive probability as the scoring rule. Moreover, the log posterior predictive score is the only coherent scoring rule under data exchangeability. This offers new insight into the marginal likelihood and cross-validation, and highlights the potential sensitivity of the marginal likelihood to the choice of the prior. We suggest an alternative approach using cumulative cross-validation following a preparatory training phase. Our work has connections to prequential analysis and intrinsic Bayes factors, but is motivated in a different way.

Suggested Citation

  • E Fong & C C Holmes, 2020. "On the marginal likelihood and cross-validation," Biometrika, Biometrika Trust, vol. 107(2), pages 489-496.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:489-496.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz077
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dubiel-Teleszynski, Tomasz & Kalogeropoulos, Konstantinos & Karouzakis, Nikolaos, 2024. "Sequential learning and economic benefits from dynamic term structure models," LSE Research Online Documents on Economics 123659, London School of Economics and Political Science, LSE Library.
    2. Dyrland, Kjetil & Lundervold, Alexander Selvikvåg & Porta Mana, PierGianLuca, 2022. "A probability transducer and decision-theoretic augmentation for machine-learning classifiers," OSF Preprints vct9y, Center for Open Science.
    3. Tsionas, Mike & Parmeter, Christopher F. & Zelenyuk, Valentin, 2023. "Bayesian Artificial Neural Networks for frontier efficiency analysis," Journal of Econometrics, Elsevier, vol. 236(2).
    4. Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
    5. Tsionas, Mike G., 2023. "Combining data envelopment analysis and stochastic frontiers via a LASSO prior," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1158-1166.
    6. Tsionas, Mike G., 2023. "Bayesian learning in performance. Is there any?," European Journal of Operational Research, Elsevier, vol. 311(1), pages 263-282.
    7. Mike Tsionas & Christopher F. Parmeter & Valentin Zelenyuk, 2021. "Bridging the Divide? Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP082021, School of Economics, University of Queensland, Australia.
    8. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2023. "Randomized geometric tools for anomaly detection in stock markets," Post-Print hal-04223511, HAL.
    9. Marrel, Amandine & Iooss, Bertrand, 2024. "Probabilistic surrogate modeling by Gaussian process: A review on recent insights in estimation and validation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. He A Xu & Alireza Modirshanechi & Marco P Lehmann & Wulfram Gerstner & Michael H Herzog, 2021. "Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-32, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:489-496.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.