On the marginal likelihood and cross-validation
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dubiel-Teleszynski, Tomasz & Kalogeropoulos, Konstantinos & Karouzakis, Nikolaos, 2024. "Sequential learning and economic benefits from dynamic term structure models," LSE Research Online Documents on Economics 123659, London School of Economics and Political Science, LSE Library.
- Dyrland, Kjetil & Lundervold, Alexander Selvikvåg & Porta Mana, PierGianLuca, 2022. "A probability transducer and decision-theoretic augmentation for machine-learning classifiers," OSF Preprints vct9y, Center for Open Science.
- Tsionas, Mike & Parmeter, Christopher F. & Zelenyuk, Valentin, 2023.
"Bayesian Artificial Neural Networks for frontier efficiency analysis,"
Journal of Econometrics, Elsevier, vol. 236(2).
- Mike Tsionas & Christopher F. Parmeter & Valentin Zelenyuk, 2023. "Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP012023, School of Economics, University of Queensland, Australia.
- Valentin Zelenyuk & Valentyn Panchenko, 2023. "Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP022023, School of Economics, University of Queensland, Australia.
- Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
- Tsionas, Mike G., 2023. "Combining data envelopment analysis and stochastic frontiers via a LASSO prior," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1158-1166.
- Tsionas, Mike G., 2023. "Bayesian learning in performance. Is there any?," European Journal of Operational Research, Elsevier, vol. 311(1), pages 263-282.
- Mike Tsionas & Christopher F. Parmeter & Valentin Zelenyuk, 2021. "Bridging the Divide? Bayesian Artificial Neural Networks for Frontier Efficiency Analysis," CEPA Working Papers Series WP082021, School of Economics, University of Queensland, Australia.
- Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2023. "Randomized geometric tools for anomaly detection in stock markets," Post-Print hal-04223511, HAL.
- Marrel, Amandine & Iooss, Bertrand, 2024. "Probabilistic surrogate modeling by Gaussian process: A review on recent insights in estimation and validation," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
- He A Xu & Alireza Modirshanechi & Marco P Lehmann & Wulfram Gerstner & Michael H Herzog, 2021. "Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-32, June.
More about this item
Keywords
cross-validation; Marginal likelihood; Prequential scoring;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:489-496.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.