IDEAS home Printed from https://ideas.repec.org/p/ecm/nasm04/600.html
   My bibliography  Save this paper

Non-Markovian Regime Switching with Endogenous States and Time-Varying State Strengths

Author

Listed:
  • Chib
  • Siddhartha; Dueker

Abstract

This article presents a non-Markovian regime switching model in which the regime states depend on the sign of an autoregressive latent variable. The magnitude of the latent variable indexes the `strength' of the state or how deeply the system is embedded in the current regime. The autoregressive nature of this non-Markovian regime switching implies time-varying state transition probabilities, even in the absence of an exogenous covariate. Furthermore, with time-varying regime strengths, the expected duration of a regime is time-varying. In this framework, it is natural to allow the autoregressive latent variable to be endogenous so that regimes are determined jointly with the observed data. We apply the model to GDP growth, as in Hamilton (1989), Albert and Chib (1993) and Filardo and Gordon (1998) to illustrate the relation of the regimes to NBER-dated recessions and the time-varying expected durations of regimes

Suggested Citation

  • Chib & Siddhartha; Dueker, 2004. "Non-Markovian Regime Switching with Endogenous States and Time-Varying State Strengths," Econometric Society 2004 North American Summer Meetings 600, Econometric Society.
  • Handle: RePEc:ecm:nasm04:600
    as

    Download full text from publisher

    File URL: http://repec.org/esNASM04/up.6408.1075609311.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. de Jong, Robert M. & Woutersen, Tiemen, 2011. "Dynamic Time Series Binary Choice," Econometric Theory, Cambridge University Press, vol. 27(4), pages 673-702, August.
    2. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    3. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    4. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
    5. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    6. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    7. Eichengreen, Barry & Watson, Mark W & Grossman, Richard S, 1985. "Bank Rate Policy under the Interwar Gold Standard: A Dynamic Probit Model," Economic Journal, Royal Economic Society, vol. 95(379), pages 725-745, September.
    8. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
    9. Pok-sang Lam, 2004. "A Markov-Switching Model Of Gnp Growth With Duration Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(1), pages 175-204, February.
    10. Kim, Chang-Jin & Piger, Jeremy & Startz, Richard, 2008. "Estimation of Markov regime-switching regression models with endogenous switching," Journal of Econometrics, Elsevier, vol. 143(2), pages 263-273, April.
    11. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
    12. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    2. Sylvia Kaufmann, 2014. "K-state switching models with time-varying transition distributions – Does credit growth signal stronger effects of variables on inflation?," Working Papers 14.04, Swiss National Bank, Study Center Gerzensee.
    3. Xin Wei, 2020. "Dynamic Expectations Formation and U.S. Monetary Policy Regime Change," CAEPR Working Papers 2020-007, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    4. Chang, Yoosoon & Maih, Junior & Tan, Fei, 2021. "Origins of monetary policy shifts: A New approach to regime switching in DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    5. Chaojun Li & Yan Liu, 2020. "Asymptotic Properties of the Maximum Likelihood Estimator in Regime-Switching Models with Time-Varying Transition Probabilities," Papers 2010.04930, arXiv.org, revised Dec 2021.
    6. Andrei A. Sirchenko, 2017. "An endogenous regime-switching model of ordered choice with an application to federal funds rate target," 2017 Papers psi424, Job Market Papers.
    7. Mark W. French, 2005. "A nonlinear look at trend MFP growth and the business cycle: result from a hybrid Kalman/Markov switching model," Finance and Economics Discussion Series 2005-12, Board of Governors of the Federal Reserve System (U.S.).
    8. Kaufmann, Sylvia, 2015. "K-state switching models with time-varying transition distributions—Does loan growth signal stronger effects of variables on inflation?," Journal of Econometrics, Elsevier, vol. 187(1), pages 82-94.
    9. Judex Hyppolite & Pravin Trivedi, 2012. "Alternative Approaches For Econometric Analysis Of Panel Count Data Using Dynamic Latent Class Models (With Application To Doctor Visits Data)," Health Economics, John Wiley & Sons, Ltd., vol. 21(S1), pages 101-128, June.
    10. Billio Monica & Casarin Roberto, 2011. "Beta Autoregressive Transition Markov-Switching Models for Business Cycle Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-32, September.
    11. Sinclair Tara M, 2009. "Asymmetry in the Business Cycle: Friedman's Plucking Model with Correlated Innovations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(1), pages 1-31, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wsr:wpaper:y:2010:i:057 is not listed on IDEAS
    2. Jean Barthélemy & Magali Marx, 2011. "State-Dependent Probability Distributions in Non Linear Rational Expectations Models," Working Papers hal-03461407, HAL.
    3. repec:hal:spmain:info:hdl:2441/7l23tbn4rd9539sljmp8of2hcb is not listed on IDEAS
    4. Maddalena Cavicchioli, 2021. "OLS Estimation of Markov switching VAR models: asymptotics and application to energy use," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 431-449, September.
    5. Zakipour-Saber, Shayan, 2019. "State-dependent Monetary Policy Regimes," Research Technical Papers 4/RT/19, Central Bank of Ireland.
    6. repec:spo:wpmain:info:hdl:2441/7l23tbn4rd9539sljmp8of2hcb is not listed on IDEAS
    7. Hamilton, J.D., 2016. "Macroeconomic Regimes and Regime Shifts," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 163-201, Elsevier.
    8. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.
    9. Luca Agnello & Gilles Dufrénot & Ricardo M. Sousa, 2012. "Adjusting the U.S. Fiscal Policy for Asset Prices: Evidence from a TVP-MS Framework," NIPE Working Papers 20/2012, NIPE - Universidade do Minho.
    10. Manuela Goretti, 2005. "The Brazilian currency turmoil of 2002: a nonlinear analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 10(4), pages 289-306.
    11. Barthélemy, Jean & Marx, Magali, 2017. "Solving endogenous regime switching models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 1-25.
    12. Fédéric Holm-Hadulla & Kirstin Hubrich, 2017. "Macroeconomic Implications of Oil Price Fluctuations : A Regime-Switching Framework for the Euro Area," Finance and Economics Discussion Series 2017-063, Board of Governors of the Federal Reserve System (U.S.).
    13. Houda Rharrabti Zaid, 2015. "Transmission du stress financier de la zone euro aux Pays de l’Europe Centrale et Orientale," EconomiX Working Papers 2015-37, University of Paris Nanterre, EconomiX.
    14. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    15. Penelope A. Smith & Peter M. Summers, 2005. "How well do Markov switching models describe actual business cycles? The case of synchronization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 253-274.
    16. Castro, Vítor, 2010. "The duration of economic expansions and recessions: More than duration dependence," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 347-365, March.
    17. Dufrénot, Gilles & Mignon, Valérie & Péguin-Feissolle, Anne, 2011. "The effects of the subprime crisis on the Latin American financial markets: An empirical assessment," Economic Modelling, Elsevier, vol. 28(5), pages 2342-2357, September.
    18. repec:hal:spmain:info:hdl:2441/644vfdaim38frrvbit4u0bh0ha is not listed on IDEAS
    19. Dufrénot, Gilles & Keddad, Benjamin, 2014. "Business cycles synchronization in East Asia: A Markov-switching approach," Economic Modelling, Elsevier, vol. 42(C), pages 186-197.
    20. Kirstin Hubrich & Daniel F. Waggoner, 2022. "The Transmission of Financial Shocks and Leverage of Financial Institutions: An Endogenous Regime-Switching Framework," FRB Atlanta Working Paper 2022-5, Federal Reserve Bank of Atlanta.
    21. Lhuissier, Stéphane, 2022. "Financial conditions and macroeconomic downside risks in the euro area," European Economic Review, Elsevier, vol. 143(C).
    22. Brian Hartley, 2022. "Episodic incidence of Harrodian instability and the Kaleckian growth model: A Markov‐switching approach," Metroeconomica, Wiley Blackwell, vol. 73(1), pages 268-290, February.
    23. Agnello, Luca & Dufrénot, Gilles & Sousa, Ricardo M., 2013. "Using time-varying transition probabilities in Markov switching processes to adjust US fiscal policy for asset prices," Economic Modelling, Elsevier, vol. 34(C), pages 25-36.
    24. Daniel Aromi & Marcos Dal Bianco, 2014. "Un analisis de los desequilibrios del tipo de cambio real argentino bajo cambios de regimen," Working Papers 1431, BBVA Bank, Economic Research Department.

    More about this item

    Keywords

    Regime switching; Markov Chain Monte Carlo;

    JEL classification:

    • F42 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Policy Coordination and Transmission
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.