IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v187y2015i1p82-94.html
   My bibliography  Save this article

K-state switching models with time-varying transition distributions—Does loan growth signal stronger effects of variables on inflation?

Author

Listed:
  • Kaufmann, Sylvia

Abstract

Two Bayesian sampling schemes are outlined to estimate a time-varying Markov switching transition distribution. Using data augmentation transforms the non-linear, non-normal logit transition model into a linear-normal one. A partial representation of the difference in random utility model in combination with random permutation sampling provides highest sampling efficiency. The level of the covariate in the transition distribution which balances the persistence across states is defined to be the threshold level. For illustration, we estimate a two-pillar Phillips curve for the euro area, in which loan growth affects the transition distribution.

Suggested Citation

  • Kaufmann, Sylvia, 2015. "K-state switching models with time-varying transition distributions—Does loan growth signal stronger effects of variables on inflation?," Journal of Econometrics, Elsevier, vol. 187(1), pages 82-94.
  • Handle: RePEc:eee:econom:v:187:y:2015:i:1:p:82-94
    DOI: 10.1016/j.jeconom.2015.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440761500024X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2015.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Interactions between eurozone and US booms and busts: A Bayesian panel Markov-switching VAR model," Working Papers 2013:17, Department of Economics, University of Venice "Ca' Foscari", revised 2014.
    2. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    3. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.
    4. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    5. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
    6. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    7. Thomas J. Sargent & Paolo Surico, 2011. "Two Illustrations of the Quantity Theory of Money: Breakdowns and Revivals," American Economic Review, American Economic Association, vol. 101(1), pages 109-128, February.
    8. Sylvia Frühwirth‐Schnatter & Christoph Pamminger & Andrea Weber & Rudolf Winter‐Ebmer, 2012. "Labor market entry and earnings dynamics: Bayesian inference using mixtures‐of‐experts Markov chain clustering," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1116-1137, November.
    9. Paap, Richard & van Dijk, Herman K, 2003. "Bayes Estimates of Markov Trends in Possibly Cointegrated Series: An Application to U.S. Consumption and Income," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 547-563, October.
    10. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    11. Amisano, Gianni & Fagan, Gabriel, 2013. "Money growth and inflation: A regime switching approach," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 118-145.
    12. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    13. James D. Hamilton & Michael T. Owyang, 2012. "The Propagation of Regional Recessions," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 935-947, November.
    14. James D. Hamilton & Daniel F. Waggoner & Tao Zha, 2007. "Normalization in Econometrics," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 221-252.
    15. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
    16. Siddhartha Chib & Michael J. Dueker, 2004. "Non-Markovian regime switching with endogenous states and time-varying state strengths," Working Papers 2004-030, Federal Reserve Bank of St. Louis.
    17. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    18. Billio Monica & Casarin Roberto, 2011. "Beta Autoregressive Transition Markov-Switching Models for Business Cycle Analysis," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(4), pages 1-32, September.
    19. Sylvia Kaufmann, 2010. "Dating and forecasting turning points by Bayesian clustering with dynamic structure: a suggestion with an application to Austrian data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 309-344.
    20. Assenmacher-Wesche, Katrin & Gerlach, Stefan, 2008. "Interpreting euro area inflation at high and low frequencies," European Economic Review, Elsevier, vol. 52(6), pages 964-986, August.
    21. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    22. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    23. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    24. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvia Kaufmann, 2014. "K-state switching models with time-varying transition distributions – Does credit growth signal stronger effects of variables on inflation?," Working Papers 14.04, Swiss National Bank, Study Center Gerzensee.
    2. Sylvia Kaufmann, 2011. "K-state switching models with endogenous transition distributions," Working Papers 2011-13, Swiss National Bank.
    3. Sylvia Kaufmann, 2016. "Hidden Markov models in time series, with applications in economics," Working Papers 16.06, Swiss National Bank, Study Center Gerzensee.
    4. Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021. "Stochastic model specification in Markov switching vector error correction models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
    5. Adam Check & Jeremy Piger, 2021. "Structural Breaks in U.S. Macroeconomic Time Series: A Bayesian Model Averaging Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(8), pages 1999-2036, December.
    6. Roberto Casarin & Komla Mawulom Agudze & Monica Billio & Eric Girardin, 2014. "Growth-cycle phases in China�s provinces: A panel Markov-switching approach," Working Papers 2014:19, Department of Economics, University of Venice "Ca' Foscari".
    7. Yong Song & Tomasz Wo'zniak, 2020. "Markov Switching," Papers 2002.03598, arXiv.org.
    8. Ringwald, Leopold & Zörner, Thomas O., 2023. "The money-inflation nexus revisited," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 293-333.
    9. Koop, Gary & Potter, Simon, 2010. "A flexible approach to parametric inference in nonlinear and time varying time series models," Journal of Econometrics, Elsevier, vol. 159(1), pages 134-150, November.
    10. Penelope A. Smith & Peter M. Summers, 2005. "How well do Markov switching models describe actual business cycles? The case of synchronization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 253-274.
    11. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    12. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    13. Amisano, Gianni & Fagan, Gabriel, 2013. "Money growth and inflation: A regime switching approach," Journal of International Money and Finance, Elsevier, vol. 33(C), pages 118-145.
    14. Spezia, Luigi, 2020. "Bayesian variable selection in non-homogeneous hidden Markov models through an evolutionary Monte Carlo method," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    15. Martínez-García Enrique, 2018. "Modeling time-variation over the business cycle (1960–2017): an international perspective," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(5), pages 1-25, December.
    16. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    17. Boris Blagov & Michael Funke, 2016. "The Credibility of Hong Kong's Currency Board System: Looking Through the Prism of MS-VAR Models with Time-Varying Transition Probabilities," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(6), pages 895-914, December.
    18. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2020. "Forecasting natural gas prices using highly flexible time-varying parameter models," Working Papers 2020-01, University of Tasmania, Tasmanian School of Business and Economics.
    19. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
    20. Fisher, Mark & Jensen, Mark J., 2019. "Bayesian inference and prediction of a multiple-change-point panel model with nonparametric priors," Journal of Econometrics, Elsevier, vol. 210(1), pages 187-202.

    More about this item

    Keywords

    Bayesian analysis; Time-varying Markov transition; Permutation sampling; Phillips curve; Threshold level;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:187:y:2015:i:1:p:82-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.