IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.04930.html
   My bibliography  Save this paper

Asymptotic Properties of the Maximum Likelihood Estimator in Regime-Switching Models with Time-Varying Transition Probabilities

Author

Listed:
  • Chaojun Li
  • Yan Liu

Abstract

We prove the asymptotic properties of the maximum likelihood estimator (MLE) in time-varying transition probability (TVTP) regime-switching models. This class of models extends the constant regime transition probability in Markov-switching models to a time-varying probability by including information from observations. An important feature in this proof is the mixing rate of the regime process conditional on the observations, which is time varying owing to the time-varying transition probabilities. Consistency and asymptotic normality follow from the almost deterministic geometrically decaying bound of the mixing rate. The assumptions are verified in regime-switching autoregressive models with widely-applied TVTP specifications. A simulation study examines the finite-sample distributions of the MLE and compares the estimates of the asymptotic variance constructed from the Hessian matrix and the outer product of the score. The simulation results favour the latter. As an empirical example, we compare three leading economic indicators in terms of describing U.S. industrial production.

Suggested Citation

  • Chaojun Li & Yan Liu, 2020. "Asymptotic Properties of the Maximum Likelihood Estimator in Regime-Switching Models with Time-Varying Transition Probabilities," Papers 2010.04930, arXiv.org, revised Dec 2021.
  • Handle: RePEc:arx:papers:2010.04930
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.04930
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leroux, Brian G., 1992. "Maximum-likelihood estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 127-143, February.
    2. Francq, C. & Zakoian, J. -M., 2001. "Stationarity of multivariate Markov-switching ARMA models," Journal of Econometrics, Elsevier, vol. 102(2), pages 339-364, June.
    3. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
    4. Siddhartha Chib & Michael J. Dueker, 2004. "Non-Markovian regime switching with endogenous states and time-varying state strengths," Working Papers 2004-030, Federal Reserve Bank of St. Louis.
    5. Demian Pouzo & Zacharias Psaradakis & Martin Sola, 2022. "Maximum Likelihood Estimation in Markov Regime‐Switching Models With Covariate‐Dependent Transition Probabilities," Econometrica, Econometric Society, vol. 90(4), pages 1681-1710, July.
    6. Christian Francq & Michel Roussignol & Jean‐Michel Zakoian, 2001. "Conditional Heteroskedasticity Driven by Hidden Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 197-220, March.
    7. Chang, Yoosoon & Choi, Yongok & Park, Joon Y., 2017. "A new approach to model regime switching," Journal of Econometrics, Elsevier, vol. 196(1), pages 127-143.
    8. Kim, Chang-Jin & Piger, Jeremy & Startz, Richard, 2008. "Estimation of Markov regime-switching regression models with endogenous switching," Journal of Econometrics, Elsevier, vol. 143(2), pages 263-273, April.
    9. Andrew Ang & Geert Bekaert & Min Wei, 2008. "The Term Structure of Real Rates and Expected Inflation," Journal of Finance, American Finance Association, vol. 63(2), pages 797-849, April.
    10. Watson, Mark W, 1994. "Business-Cycle Durations and Postwar Stabilization of the U.S. Economy," American Economic Review, American Economic Association, vol. 84(1), pages 24-46, March.
    11. Bekaert, Geert & Harvey, Campbell R, 1995. "Time-Varying World Market Integration," Journal of Finance, American Finance Association, vol. 50(2), pages 403-444, June.
    12. Yao, J., 2001. "On square-integrability of an AR process with Markov switching," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 265-270, April.
    13. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    14. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-316, July.
    15. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2019. "Asymptotic properties of the maximum likelihood estimator in regime switching econometric models," Journal of Econometrics, Elsevier, vol. 208(2), pages 442-467.
    16. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    17. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    18. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aknouche, Abdelhakim, 2024. "Periodically homogeneous Markov chains: The discrete state space case," MPRA Paper 122287, University Library of Munich, Germany.
    2. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    3. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    4. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    5. Szabolcs Blazsek & Anna Downarowicz, 2013. "Forecasting hedge fund volatility: a Markov regime-switching approach," The European Journal of Finance, Taylor & Francis Journals, vol. 19(4), pages 243-275, April.
    6. Demian Pouzo & Zacharias Psaradakis & Martin Sola, 2022. "Maximum Likelihood Estimation in Markov Regime‐Switching Models With Covariate‐Dependent Transition Probabilities," Econometrica, Econometric Society, vol. 90(4), pages 1681-1710, July.
    7. Sylvia Kaufmann, 2016. "Hidden Markov models in time series, with applications in economics," Working Papers 16.06, Swiss National Bank, Study Center Gerzensee.
    8. Maciej Augustyniak & Mathieu Boudreault & Manuel Morales, 2018. "Maximum Likelihood Estimation of the Markov-Switching GARCH Model Based on a General Collapsing Procedure," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 165-188, March.
    9. Yuan, Chunming, 2011. "Forecasting exchange rates: The multi-state Markov-switching model with smoothing," International Review of Economics & Finance, Elsevier, vol. 20(2), pages 342-362, April.
    10. Ruijun Bu & Jie Cheng & Fredj Jawadi, 2022. "A latent‐factor‐driven endogenous regime‐switching non‐Gaussian model: Evidence from simulation and application," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 3881-3896, October.
    11. Francq, Christian & ZakoI¨an, Jean-Michel, 2005. "The L2-structures of standard and switching-regime GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1557-1582, September.
    12. Roberta Colavecchio & Michael Funke, 2007. "Volatility dependence across Asia-Pacific on-shore and off-shore U.S. dollar futures markets," Quantitative Macroeconomics Working Papers 20708, Hamburg University, Department of Economics.
    13. Francq, Christian & ZakoI¨an, Jean-Michel, 2008. "Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3027-3046, February.
    14. Hamilton, J.D., 2016. "Macroeconomic Regimes and Regime Shifts," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 163-201, Elsevier.
    15. Szabolcs Blazsek & Anna Downarowicz, 2008. "Regime switching models of hedge fund returns," Faculty Working Papers 12/08, School of Economics and Business Administration, University of Navarra.
    16. Kwon, Dream & Lee, Oesook, 2024. "The functional central limit theorem for Markov-switching GARCH model," Economics Letters, Elsevier, vol. 238(C).
    17. Heidari , Hassan & Refah-Kahriz, Arash & Hashemi Berenjabadi, Nayyer, 2018. "Dynamic Relationship between Macroeconomic Variables and Stock Return Volatility in Tehran Stock Exchange: Multivariate MS ARMA GARCH Approach," Quarterly Journal of Applied Theories of Economics, Faculty of Economics, Management and Business, University of Tabriz, vol. 5(2), pages 223-250, August.
    18. He, Hui & Yang, Jiawen, 2011. "Regime-switching analysis of ADR home market pass-through," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 204-214, January.
    19. Chun-Chang Lee & Chih-Min Liang & Hsing-Jung Chou, 2013. "Identifying Taiwan real estate cycle turning points- An application of the multivariate Markov-switching autoregressive Model," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 3(2), pages 1-1.
    20. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.04930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.