IDEAS home Printed from https://ideas.repec.org/p/ecm/ausm04/93.html
   My bibliography  Save this paper

Monotonicity Conditions and Inequality Imputation for Sample Selection and Non-Response Problems

Author

Listed:
  • Lee
  • Myoung-jae

Abstract

Under a sample selection or non-response problem where a response variable y is observed only when a condition δ=1 is met, the identified mean E(y|δ=1) is not equal to the desired mean E(y). But the monotonicity condition E(y|δ=1)≤E(y|δ=0) yields an informative bound E(y|δ=1)≤E(y), which is enough for certain inferences. For example, in a majority voting with δ being vote-turnout, it is enough to know if E(y)>0.5 or not, for which E(y|δ=1)>0.5 is sufficient under the monotonicity. The main question is then whether the monotonicity condition is testable, and if not, when it is plausible. Answering to these queries, when there is a "proxy" variable z related to y but fully observed, we provide a test for the monotonicity; when z is not available, we provide primitive conditions and plausible models for the monotonicity. Going further, when both y and z are binary, bivariate monotonicities of the type P(y,z|δ=1)≤P(y,z|δ=0) are considered, which can lead to sharper bounds for P(y). As an empirical example, a data set on the 1996 US presidential election is analyzed to see if the Republican candidate could have won had everybody voted, i.e., to see if P(y)>0.5 where y=1 is voting for the Republican candidate

Suggested Citation

  • Lee & Myoung-jae, 2004. "Monotonicity Conditions and Inequality Imputation for Sample Selection and Non-Response Problems," Econometric Society 2004 Australasian Meetings 93, Econometric Society.
  • Handle: RePEc:ecm:ausm04:93
    as

    Download full text from publisher

    File URL: http://repec.org/esAUSM04/up.20108.1076996069.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horowitz, Joel & Manski, Charles, 1997. "Nonparametric Analysis of Randomized Experiments With Missing Covariate and Outcome Data," Working Papers 97-16, University of Iowa, Department of Economics.
    2. DENUIT, Michel & SAILLET, Olivier, 2001. "Nonparametric Tests for Positive Quadrant Dependence," LIDAM Discussion Papers IRES 2001009, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES), revised 01 Apr 2001.
    3. Lee, Myoung-jae & Melenberg, Bertrand, 1998. "Bounding quantiles in sample selection models," Economics Letters, Elsevier, vol. 61(1), pages 29-35, October.
    4. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cwl:cwldpp:1761rr is not listed on IDEAS
    2. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    3. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    4. Charles F. Manski, 2000. "Using Studies of Treatment Response to Inform Treatment Choice in Heterogeneous Populations," NBER Technical Working Papers 0263, National Bureau of Economic Research, Inc.
    5. Sokbae Lee & Oliver Linton & Yoon-Jae Whang, 2009. "Testing for Stochastic Monotonicity," Econometrica, Econometric Society, vol. 77(2), pages 585-602, March.
    6. Harmon, Colm & Hogan, Vincent & Walker, Ian, 2003. "Dispersion in the economic return to schooling," Labour Economics, Elsevier, vol. 10(2), pages 205-214, April.
    7. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    8. Arnaud Chevalier & Gauthier Lanot, 2004. "Monotonicity and the Roy Model," Manchester School, University of Manchester, vol. 72(4), pages 560-567, July.
    9. German Blanco & Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Bounds on Average and Quantile Treatment Effects of Job Corps Training on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 48(3), pages 659-701.
    10. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    11. Monique De Haan & Edwin Leuven, 2020. "Head Start and the Distribution of Long-Term Education and Labor Market Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 38(3), pages 727-765.
    12. Stenberg, Anders & Westerlund, Olle, 2016. "Flexibility at a cost – Should governments stimulate tertiary education for adults?," The Journal of the Economics of Ageing, Elsevier, vol. 7(C), pages 69-86.
    13. Chi, Wei & Li, Bo, 2014. "Trends in China’s gender employment and pay gap: Estimating gender pay gaps with employment selection," Journal of Comparative Economics, Elsevier, vol. 42(3), pages 708-725.
    14. Filip Obradovi'c, 2022. "Measuring Diagnostic Test Performance Using Imperfect Reference Tests: A Partial Identification Approach," Papers 2204.00180, arXiv.org, revised Aug 2024.
    15. Marc Henry & Romuald Meango & Ismael Mourifie, 2020. "Role models and revealed gender-specific costs of STEM in an extended Roy model of major choice," Papers 2005.09095, arXiv.org, revised Aug 2023.
    16. Kreider, Brent & Pepper, John V., 2007. "Disability and Employment: Reevaluating the Evidence in Light of Reporting Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 432-441, June.
    17. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    18. Joshua C. C. Chan & Justin L. Tobias, 2015. "Priors and Posterior Computation in Linear Endogenous Variable Models with Imperfect Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 650-674, June.
    19. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    20. Andrew Chesher, 2002. "Local identification in nonseparable models," CeMMAP working papers CWP05/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    21. Brent Kreider & John V. Pepper & Manan Roy, 2016. "Identifying the Effects of WIC on Food Insecurity Among Infants and Children," Southern Economic Journal, John Wiley & Sons, vol. 82(4), pages 1106-1122, April.

    More about this item

    Keywords

    sample selection; non-response; monotonicity; imputation; orthant dependence;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.