IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2005.html
   My bibliography  Save this paper

Business Cycles, Trend Elimination, and the HP Filter

Author

Abstract

We analyze trend elimination methods and business cycle estimation by data filtering of the type introduced by Whittaker (1923) and popularized in economics in a particular form by Hodrick and Prescott (1980/1997; HP). A limit theory is developed for the HP filter for various classes of stochastic trend, trend break, and trend stationary data. Properties of the filtered series are shown to depend closely on the choice of the smoothing parameter (lambda). For instance, when lambda = O(n^4) where n is the sample size, and the HP filter is applied to an I(1) process, the filter does not remove the stochastic trend in the limit as n approaches infinity. Instead, the filter produces a smoothed Gaussian limit process that is differentiable to the 4'th order. The residual 'cyclical' process has the random wandering non-differentiable characteristics of Brownian motion, thereby explaining the frequently observed 'spurious cycle' effect of the HP filter. On the other hand, when lambda = o(n), the filter reproduces the limit Brownian motion and eliminates the stochastic trend giving a zero 'cyclical' process. Simulations reveal that the lambda = O(n^4) limit theory provides a good approximation to the actual HP filter for sample sizes common in practical work. When it is used as a trend removal device, the HP filter therefore typically fails to eliminate stochastic trends, contrary to what is now standard belief in applied macroeconomics. The findings are related to recent public debates about the long run effects of the global financial crisis.

Suggested Citation

  • Peter C. B. Phillips & Sainan Jin, 2015. "Business Cycles, Trend Elimination, and the HP Filter," Cowles Foundation Discussion Papers 2005, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2005
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d20/d2005.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    2. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2014. "Specification Sensitivity in Right-Tailed Unit Root Testing for Explosive Behaviour," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 315-333, June.
    3. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
    4. Peter C.B. Phillips & Sam Ouliaris & Joon Y. Park, 1988. "Testing for a Unit Root in the Presence of a Maintained Trend," Cowles Foundation Discussion Papers 880, Cowles Foundation for Research in Economics, Yale University.
    5. Blix, Mårten, 1999. "Forecasting Swedish Inflation With a Markov Switching VAR," Working Paper Series 76, Sveriges Riksbank (Central Bank of Sweden).
    6. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    7. Backus, David K & Kehoe, Patrick J, 1992. "International Evidence of the Historical Properties of Business Cycles," American Economic Review, American Economic Association, vol. 82(4), pages 864-888, September.
    8. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    9. Tucker McElroy, 2008. "Exact formulas for the Hodrick-Prescott filter," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 209-217, March.
    10. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    11. Yamada, Hiroshi, 2020. "A Smoothing Method That Looks Like The Hodrick–Prescott Filter," Econometric Theory, Cambridge University Press, vol. 36(5), pages 961-981, October.
    12. Sakarya, Neslihan & de Jong, Robert M., 2020. "A Property Of The Hodrick–Prescott Filter And Its Application," Econometric Theory, Cambridge University Press, vol. 36(5), pages 840-870, October.
    13. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    14. Phillips, Peter C.B., 2014. "Optimal estimation of cointegrated systems with irrelevant instruments," Journal of Econometrics, Elsevier, vol. 178(P2), pages 210-224.
    15. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
    16. Peter C. B. Phillips & Shu-Ping Shi & Jun Yu, 2011. "Specification Sensitivity in Right-Tailed Unit Root Testing for Explosive Behavior," Working Papers 15-2011, Singapore Management University, School of Economics.
    17. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    18. Peter C. B. Phillips, 2003. "Laws and Limits of Econometrics," Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.
    19. Osborn, Denise R, 1995. "Moving Average Detrending and the Analysis of Business Cycles," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 57(4), pages 547-558, November.
    20. Sun, Yixiao, 2014. "Let’s fix it: Fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and autocorrelation robust inference," Journal of Econometrics, Elsevier, vol. 178(P3), pages 659-677.
    21. Frederick R. Macaulay, 1931. "The Smoothing of Time Series," NBER Books, National Bureau of Economic Research, Inc, number maca31-1, June.
    22. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    23. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    24. Adriana Cornea-Madeira, 2017. "The Explicit Formula for the Hodrick-Prescott Filter in a Finite Sample," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 314-318, May.
    25. White Halbert & Granger Clive W.J., 2011. "Consideration of Trends in Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-40, February.
    26. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    27. Shiller, Robert J, 1973. "A Distributed Lag Estimator Derived from Smoothness Priors," Econometrica, Econometric Society, vol. 41(4), pages 775-788, July.
    28. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    29. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    30. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.
    2. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    3. Haitham A. Al-Zoubi, 2024. "An affine model for short rates when monetary policy is path dependent," Review of Derivatives Research, Springer, vol. 27(2), pages 151-201, July.
    4. James D. Hamilton, 2017. "Why You Should Never Use the Hodrick-Prescott Filter," NBER Working Papers 23429, National Bureau of Economic Research, Inc.
    5. Jylhä, Petri & Lof, Matthijs, 2022. "Mind the Basel gap," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    6. Peter C.B. Phillips & Zhentao Shi, 2019. "Boosting the Hodrick-Prescott Filter," Cowles Foundation Discussion Papers 2192, Cowles Foundation for Research in Economics, Yale University.
    7. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    8. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).
    9. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1043-1078, November.
    10. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    11. Wolf, Elias & Mokinski, Frieder & Schüler, Yves, 2020. "On adjusting the one-sided Hodrick-Prescott filter," Discussion Papers 11/2020, Deutsche Bundesbank.
    12. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    13. Neslihan Sakarya & Robert M. de Jong, 2022. "The spectral analysis of the Hodrick–Prescott filter," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 479-489, May.
    14. Peter C. B. Phillips, 2021. "Pitfalls in Bootstrapping Spurious Regression," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 163-217, December.
    15. Yanbo Liu & Peter C. B. Phillips & Jun Yu, 2023. "A Panel Clustering Approach To Analyzing Bubble Behavior," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(4), pages 1347-1395, November.
    16. Kaloyan Ganev, 2020. "Real-Time vs. Full-Sample Performance of One-Sided and Two-Sided HP Filters. An Application to 27 EU Member States’ GDP Data," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(3), pages 251-272, September.
    17. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    18. Hiroshi Yamada, 2023. "Quantile regression version of Hodrick–Prescott filter," Empirical Economics, Springer, vol. 64(4), pages 1631-1645, April.
    19. Hertrich Markus, 2019. "A Novel Housing Price Misalignment Indicator for Germany," German Economic Review, De Gruyter, vol. 20(4), pages 759-794, December.
    20. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.

    More about this item

    Keywords

    Detrending; Graduation; Hodrick Prescott filter; Integrated process; Limit theory; Smoothing; Trend break; Whittaker filter;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.