IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws081305.html
   My bibliography  Save this paper

A semi-parametric model for circular data based on mixtures of beta distributions

Author

Listed:
  • Carnicero, José Antonio

Abstract

This paper introduces a new, semi-parametric model for circular data, based on mixtures of shifted, scaled, beta (SSB) densities. This model is more general than the Bernstein polynomial density model which is well known to provide good approximations to any density with finite support and it is shown that, as for the Bernstein polynomial model, the trigonometric moments of the SSB mixture model can all be derived. Two methods of fitting the SSB mixture model are considered. Firstly, a classical, maximum likelihood approach for fitting mixtures of a given number of SSB components is introduced. The Bayesian information criterion is then used for model selection. Secondly, a Bayesian approach using Gibbs sampling is considered. In this case, the number of mixture components is selected via an appropriate deviance information criterion. Both approaches are illustrated with real data sets and the results are compared with those obtained using Bernstein polynomials and mixtures of von Mises distributions.

Suggested Citation

  • Carnicero, José Antonio, 2008. "A semi-parametric model for circular data based on mixtures of beta distributions," DES - Working Papers. Statistics and Econometrics. WS ws081305, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws081305
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/e2b23a8b-ba21-427a-bdba-47980ddd8c85/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    2. J. J. Fernández-Durán, 2004. "Circular Distributions Based on Nonnegative Trigonometric Sums," Biometrics, The International Biometric Society, vol. 60(2), pages 499-503, June.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. José T.A.S. Ferreira & Miguel A Juárez & MArk F.J. Steel, 2005. "Directional Log-spline Distributions," Econometrics 0511001, University Library of Munich, Germany.
    5. A. Mooney, Jennifer & Helms, Peter J. & Jolliffe, Ian T., 2003. "Fitting mixtures of von Mises distributions: a case study involving sudden infant death syndrome," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 505-513, January.
    6. Sonia Petrone & Larry Wasserman, 2002. "Consistency of Bernstein polynomial posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(1), pages 79-100, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José T.A.S. Ferreira & Miguel A Juárez & MArk F.J. Steel, 2005. "Directional Log-spline Distributions," Econometrics 0511001, University Library of Munich, Germany.
    2. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    3. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    4. S. Upadhyay & M. Peshwani, 2008. "Posterior analysis of lognormal regression models using the Gibbs sampler," Statistical Papers, Springer, vol. 49(1), pages 59-85, March.
    5. Assaf, A. George & Tsionas, Mike & Oh, Haemoon, 2018. "The time has come: Toward Bayesian SEM estimation in tourism research," Tourism Management, Elsevier, vol. 64(C), pages 98-109.
    6. repec:jss:jstsof:40:i05 is not listed on IDEAS
    7. Carnicero, José Antonio, 2010. "Circular Bernstein polynomial distributions," DES - Working Papers. Statistics and Econometrics. WS ws102511, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Lopes, Hedibert F. & Dias, Ronaldo, 2011. "Bayesian mixture of parametric and nonparametric density estimation: A Misspecification Problem," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 31(1), March.
    9. Ang Shan & Fengkai Yang, 2021. "Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    10. Komárek, Arnost, 2009. "A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3932-3947, October.
    11. Chen, Yunxiao & Lu, Yan & Moustaki, Irini, 2022. "Detection of two-way outliers in multivariate data and application to cheating detection in educational tests," LSE Research Online Documents on Economics 112499, London School of Economics and Political Science, LSE Library.
    12. Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.
    13. G. Iliopoulos & M. Kateri & I. Ntzoufras, 2009. "Bayesian Model Comparison for the Order Restricted RC Association Model," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 561-587, December.
    14. McGrory, C.A. & Titterington, D.M., 2007. "Variational approximations in Bayesian model selection for finite mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5352-5367, July.
    15. Arima, Serena & Basset, Alberto & Jona Lasinio, Giovanna & Pollice, Alessio & Rosati, Ilaria, 2013. "A hierarchical Bayesian model for the ecological status classification of lagoons," Ecological Modelling, Elsevier, vol. 263(C), pages 187-195.
    16. Sanjeena Subedi & Paul D. McNicholas, 2021. "A Variational Approximations-DIC Rubric for Parameter Estimation and Mixture Model Selection Within a Family Setting," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 89-108, April.
    17. Nicolas Chopin & Christian P. Robert, 2010. "Properties of nested sampling," Biometrika, Biometrika Trust, vol. 97(3), pages 741-755.
    18. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    19. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    20. McVinish, R. & Mengersen, K., 2008. "Semiparametric Bayesian circular statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4722-4730, June.
    21. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.

    More about this item

    Keywords

    Circular data;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws081305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.