IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v74y2009i4p561-587.html
   My bibliography  Save this article

Bayesian Model Comparison for the Order Restricted RC Association Model

Author

Listed:
  • G. Iliopoulos
  • M. Kateri
  • I. Ntzoufras

Abstract

No abstract is available for this item.

Suggested Citation

  • G. Iliopoulos & M. Kateri & I. Ntzoufras, 2009. "Bayesian Model Comparison for the Order Restricted RC Association Model," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 561-587, December.
  • Handle: RePEc:spr:psycho:v:74:y:2009:i:4:p:561-587
    DOI: 10.1007/s11336-009-9117-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-009-9117-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-009-9117-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisca Galindo-Garre & Jeroen Vermunt, 2004. "The order-restricted association model: Two estimation algorithms and issues in testing," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 641-654, December.
    2. Bartolucci F. & Forcina A., 2002. "Extended RC Association Models Allowing for Order Restrictions and Marginal Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1192-1199, December.
    3. Burman, Prabir, 2004. "On some testing problems for sparse contingency tables," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 1-18, January.
    4. Carolyn Anderson & Hsiu-Ting Yu, 2007. "Log-Multiplicative Association Models as Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 72(1), pages 5-23, March.
    5. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    6. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    7. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    8. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demirhan, Haydar, 2013. "Bayesian estimation of order-restricted and unrestricted association models," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 109-126.
    2. Linda J. Young & M. Kateri & A. Agresti, 2013. "Bayesian inference about odds ratio structure in ordinal contingency tables," Environmetrics, John Wiley & Sons, Ltd., vol. 24(5), pages 281-288, August.
    3. Oh, Man-Suk, 2014. "Bayesian test on equality of score parameters in the order restricted RC association model," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 147-157.
    4. Roberta Paroli & Guido Consonni, 2020. "Objective Bayesian comparison of order-constrained models in contingency tables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 139-165, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolyn Anderson, 2013. "Multidimensional Item Response Theory Models with Collateral Information as Poisson Regression Models," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 276-303, July.
    2. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    3. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    4. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    5. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    6. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    7. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    8. Carnicero, José Antonio, 2008. "A semi-parametric model for circular data based on mixtures of beta distributions," DES - Working Papers. Statistics and Econometrics. WS ws081305, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. S. Upadhyay & M. Peshwani, 2008. "Posterior analysis of lognormal regression models using the Gibbs sampler," Statistical Papers, Springer, vol. 49(1), pages 59-85, March.
    10. Assaf, A. George & Tsionas, Mike & Oh, Haemoon, 2018. "The time has come: Toward Bayesian SEM estimation in tourism research," Tourism Management, Elsevier, vol. 64(C), pages 98-109.
    11. Peter Congdon, 2006. "A Model Framework for Mortality and Health Data Classified by Age, Area, and Time," Biometrics, The International Biometric Society, vol. 62(1), pages 269-278, March.
    12. Demirhan, Haydar, 2013. "Bayesian estimation of order-restricted and unrestricted association models," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 109-126.
    13. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    14. Dingjing Shi & Xin Tong, 2017. "The Impact of Prior Information on Bayesian Latent Basis Growth Model Estimation," SAGE Open, , vol. 7(3), pages 21582440177, August.
    15. Ang Shan & Fengkai Yang, 2021. "Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    16. Komárek, Arnost, 2009. "A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3932-3947, October.
    17. Lee, Jung Wun & Chung, Hwan & Jeon, Saebom, 2021. "Bayesian multivariate latent class profile analysis: Exploring the developmental progression of youth depression and substance use," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    18. David I. Ohlssen & Linda D. Sharples & David J. Spiegelhalter, 2007. "A hierarchical modelling framework for identifying unusual performance in health care providers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 865-890, October.
    19. Chen, Yunxiao & Lu, Yan & Moustaki, Irini, 2022. "Detection of two-way outliers in multivariate data and application to cheating detection in educational tests," LSE Research Online Documents on Economics 112499, London School of Economics and Political Science, LSE Library.
    20. Li, Hong & De Waegenaere, Anja & Melenberg, Bertrand, 2015. "The choice of sample size for mortality forecasting: A Bayesian learning approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 153-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:74:y:2009:i:4:p:561-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.