IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i6p590-d514268.html
   My bibliography  Save this article

Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm

Author

Listed:
  • Ang Shan

    (School of Mathematics, Shandong University, Jinan 250100, China)

  • Fengkai Yang

    (School of Mathematics and Statistics, Shandong University, Weihai 264209, China)

Abstract

Finite mixtures normal regression (FMNR) models are widely used to investigate the relationship between a response variable and a set of explanatory variables from several unknown latent homogeneous groups. However, the classical EM algorithm and Gibbs sampling to deal with this model have several weak points. In this paper, a non-iterative sampling algorithm for fitting FMNR model is proposed from a Bayesian perspective. The procedure can generate independently and identically distributed samples from the posterior distributions of the parameters and produce more reliable estimations than the EM algorithm and Gibbs sampling. Simulation studies are conducted to illustrate the performance of the algorithm with supporting results. Finally, a real data is analyzed to show the usefulness of the methodology.

Suggested Citation

  • Ang Shan & Fengkai Yang, 2021. "Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:590-:d:514268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/6/590/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/6/590/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsionas, Mike G., 2017. "A non-iterative (trivial) method for posterior inference in stochastic volatility models," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 83-87.
    2. Fengkai Yang & Haijing Yuan, 2017. "A Non-iterative Bayesian Sampling Algorithm for Linear Regression Models with Scale Mixtures of Normal Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 579-597, April.
    3. T. Rolf Turner, 2000. "Estimating the propagation rate of a viral infection of potato plants via mixtures of regressions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 371-384.
    4. David Hunter & Derek Young, 2012. "Semiparametric mixtures of regressions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 19-38.
    5. Li, Xiongya & Bai, Xiuqin & Song, Weixing, 2017. "Robust mixture multivariate linear regression by multivariate Laplace distribution," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 32-39.
    6. De Veaux, Richard D., 1989. "Mixtures of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 8(3), pages 227-245, November.
    7. Benaglia, Tatiana & Chauveau, Didier & Hunter, David R. & Young, Derek S., 2009. "mixtools: An R Package for Analyzing Mixture Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i06).
    8. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    9. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    10. Song, Weixing & Yao, Weixin & Xing, Yanru, 2014. "Robust mixture regression model fitting by Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 128-137.
    11. Wu, Qiang & Yao, Weixin, 2016. "Mixtures of quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 162-176.
    12. Yuzhu Tian & Manlai Tang & Maozai Tian, 2016. "A class of finite mixture of quantile regressions with its applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1240-1252, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
    2. Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.
    3. Xiaoqiong Fang & Andy W. Chen & Derek S. Young, 2023. "Predictors with measurement error in mixtures of polynomial regressions," Computational Statistics, Springer, vol. 38(1), pages 373-401, March.
    4. Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.
    5. Saverio Ranciati & Giuliano Galimberti & Gabriele Soffritti, 2019. "Bayesian variable selection in linear regression models with non-normal errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 323-358, June.
    6. Naderi, Mehrdad & Mirfarah, Elham & Wang, Wan-Lun & Lin, Tsung-I, 2023. "Robust mixture regression modeling based on the normal mean-variance mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    7. Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
    8. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
    9. Wu, Qiang & Yao, Weixin, 2016. "Mixtures of quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 162-176.
    10. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.
    11. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    12. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    13. Kazuhiko Kakamu, 2022. "Bayesian analysis of mixtures of lognormal distribution with an unknown number of components from grouped data," Papers 2210.05115, arXiv.org, revised Sep 2023.
    14. Carnicero, José Antonio, 2008. "A semi-parametric model for circular data based on mixtures of beta distributions," DES - Working Papers. Statistics and Econometrics. WS ws081305, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. S. Upadhyay & M. Peshwani, 2008. "Posterior analysis of lognormal regression models using the Gibbs sampler," Statistical Papers, Springer, vol. 49(1), pages 59-85, March.
    16. Assaf, A. George & Tsionas, Mike & Oh, Haemoon, 2018. "The time has come: Toward Bayesian SEM estimation in tourism research," Tourism Management, Elsevier, vol. 64(C), pages 98-109.
    17. Buddhavarapu, Prasad & Scott, James G. & Prozzi, Jorge A., 2016. "Modeling unobserved heterogeneity using finite mixture random parameters for spatially correlated discrete count data," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 492-510.
    18. Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
    19. Dingjing Shi & Xin Tong, 2017. "The Impact of Prior Information on Bayesian Latent Basis Growth Model Estimation," SAGE Open, , vol. 7(3), pages 21582440177, August.
    20. Komárek, Arnost, 2009. "A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3932-3947, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:590-:d:514268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.