IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/23410.html
   My bibliography  Save this paper

D-Trace precision matrix estimator with eigenvalue control

Author

Listed:
  • Avagyan, Vahe

Abstract

The estimation of a precision matrix has an important role in several research fields. In high-dimensional settings, one of the most prominent approaches to estimate the precision matrix is the ɭ₁ (Lasso) norm penalized convex optimization. This framework guarantees the sparsity of the estimated precision matrix. However, it does not control the eigenspectrum of the obtained estimator, and, moreover, it shrinks the largest eigenvalues of the estimated precision matrix. In this paper, we focus on D-trace precision matrix methodology. We propose imposing a negative trace penalization on the objective function of the D-trace approach, aimed to control the eigenvalues. Through extensive numerical analysis, using simulated and real datasets, we show the advantageous performance of our proposed methodology.

Suggested Citation

  • Avagyan, Vahe, 2016. "D-Trace precision matrix estimator with eigenvalue control," DES - Working Papers. Statistics and Econometrics. WS 23410, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:23410
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/07db63da-8ecc-49b3-8951-e039fb30aa6e/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frahm, Gabriel & Memmel, Christoph, 2010. "Dominating estimators for minimum-variance portfolios," Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
    2. repec:hal:journl:peer-00741629 is not listed on IDEAS
    3. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    4. repec:bla:jfinan:v:53:y:1998:i:5:p:1821-1827 is not listed on IDEAS
    5. Yin, Jianxin & Li, Hongzhe, 2013. "Adjusting for high-dimensional covariates in sparse precision matrix estimation by ℓ1-penalization," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 365-381.
    6. Teng Zhang & Hui Zou, 2014. "Sparse precision matrix estimation via lasso penalized D-trace loss," Biometrika, Biometrika Trust, vol. 101(1), pages 103-120.
    7. Tarr, G. & Müller, S. & Weber, N.C., 2016. "Robust estimation of precision matrices under cellwise contamination," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 404-420.
    8. Goto, Shingo & Xu, Yan, 2015. "Improving Mean Variance Optimization through Sparse Hedging Restrictions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(6), pages 1415-1441, December.
    9. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    10. Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
    11. Heng Lian & Zengyan Fan, 2015. "Estimation of a sparse and spiked covariance matrix," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(2), pages 241-252, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.
    2. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Avagyan, Vahe & Nogales, Francisco J., 2014. "Improving the graphical lasso estimation for the precision matrix through roots ot the sample convariance matrix," DES - Working Papers. Statistics and Econometrics. WS ws141208, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Ding, Wenliang & Shu, Lianjie & Gu, Xinhua, 2023. "A robust Glasso approach to portfolio selection in high dimensions," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 22-37.
    5. Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
    6. Huihang Liu & Xinyu Zhang, 2023. "Frequentist model averaging for undirected Gaussian graphical models," Biometrics, The International Biometric Society, vol. 79(3), pages 2050-2062, September.
    7. Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Vahe Avagyan, 2022. "Precision matrix estimation using penalized Generalized Sylvester matrix equation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 950-967, December.
    9. Yang, Yihe & Dai, Hongsheng & Pan, Jianxin, 2023. "Block-diagonal precision matrix regularization for ultra-high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    10. Byrd, Michael & Nghiem, Linh H. & McGee, Monnie, 2021. "Bayesian regularization of Gaussian graphical models with measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    11. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    12. Arbia, Giuseppe & Bramante, Riccardo & Facchinetti, Silvia & Zappa, Diego, 2018. "Modeling inter-country spatial financial interactions with Graphical Lasso: An application to sovereign co-risk evaluation," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 72-79.
    13. Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
    14. He, Yong & Zhang, Xinsheng & Wang, Pingping & Zhang, Liwen, 2017. "High dimensional Gaussian copula graphical model with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 457-474.
    15. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    16. Liu, Jianyu & Yu, Guan & Liu, Yufeng, 2019. "Graph-based sparse linear discriminant analysis for high-dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 250-269.
    17. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    18. Guanghui Cheng & Zhengjun Zhang & Baoxue Zhang, 2017. "Test for bandedness of high-dimensional precision matrices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 884-902, October.
    19. Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.
    20. Lin Zhang & Andrew DiLernia & Karina Quevedo & Jazmin Camchong & Kelvin Lim & Wei Pan, 2021. "A random covariance model for bi‐level graphical modeling with application to resting‐state fMRI data," Biometrics, The International Biometric Society, vol. 77(4), pages 1385-1396, December.

    More about this item

    Keywords

    Gaussian Graphical Model;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:23410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.