IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v27y2015i2p241-252.html
   My bibliography  Save this article

Estimation of a sparse and spiked covariance matrix

Author

Listed:
  • Heng Lian
  • Zengyan Fan

Abstract

We suggest a method for estimating a covariance matrix that can be represented as a sum of a sparse low-rank matrix and a diagonal matrix. Our formulation is based on penalized quadratic loss, which is a convex problem that can be solved via incremental gradient and proximal method. In contrast to other spiked covariance matrix estimation approaches that are related to principal component analysis and factor analysis, our method has a simple formulation and does not constrain entire rows and columns of the matrix to be zero. We further discuss a penalized entropy loss method that is nevertheless nonconvex and necessitates a majorization-minimization algorithm in combination with the incremental gradient and proximal method. We carry out simulations to demonstrate the finite-sample properties focusing on high-dimensional covariance matrices. Finally, the proposed method is illustrated using a gene expression data set.

Suggested Citation

  • Heng Lian & Zengyan Fan, 2015. "Estimation of a sparse and spiked covariance matrix," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(2), pages 241-252, June.
  • Handle: RePEc:taf:gnstxx:v:27:y:2015:i:2:p:241-252
    DOI: 10.1080/10485252.2015.1022545
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2015.1022545
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2015.1022545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avagyan, Vahe, 2016. "D-Trace precision matrix estimator with eigenvalue control," DES - Working Papers. Statistics and Econometrics. WS 23410, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:27:y:2015:i:2:p:241-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.