Precision matrix estimation using penalized Generalized Sylvester matrix equation
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-022-00807-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- van Wieringen, Wessel N. & Peeters, Carel F.W., 2016. "Ridge estimation of inverse covariance matrices from high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 284-303.
- Liu, Weidong & Luo, Xi, 2015. "Fast and adaptive sparse precision matrix estimation in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 153-162.
- Peng, Jie & Wang, Pei & Zhou, Nengfeng & Zhu, Ji, 2009. "Partial Correlation Estimation by Joint Sparse Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 735-746.
- Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
- Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
- Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.
- Yin, Jianxin & Li, Hongzhe, 2013. "Adjusting for high-dimensional covariates in sparse precision matrix estimation by ℓ1-penalization," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 365-381.
- Teng Zhang & Hui Zou, 2014. "Sparse precision matrix estimation via lasso penalized D-trace loss," Biometrika, Biometrika Trust, vol. 101(1), pages 103-120.
- Wang, Cheng & Jiang, Binyan, 2020. "An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss," Computational Statistics & Data Analysis, Elsevier, vol. 142(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
- Zheng, Zemin & Li, Liwan & Zhou, Jia & Kong, Yinfei, 2020. "Innovated scalable dynamic learning for time-varying graphical models," Statistics & Probability Letters, Elsevier, vol. 165(C).
- Wei Dong & Hongzhen Liu, 2024. "Distributed Sparse Precision Matrix Estimation via Alternating Block-Based Gradient Descent," Mathematics, MDPI, vol. 12(5), pages 1-15, February.
- Huihang Liu & Xinyu Zhang, 2023. "Frequentist model averaging for undirected Gaussian graphical models," Biometrics, The International Biometric Society, vol. 79(3), pages 2050-2062, September.
- Fan, Xinyan & Zhang, Qingzhao & Ma, Shuangge & Fang, Kuangnan, 2021. "Conditional score matching for high-dimensional partial graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.
- Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Avagyan, Vahe, 2016. "D-Trace precision matrix estimator with eigenvalue control," DES - Working Papers. Statistics and Econometrics. WS 23410, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Zheng, Zemin & Shi, Haiyu & Li, Yang & Yuan, Hui, 2020. "Uniform joint screening for ultra-high dimensional graphical models," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
- Yang, Yihe & Dai, Hongsheng & Pan, Jianxin, 2023. "Block-diagonal precision matrix regularization for ultra-high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
- Seunghwan Lee & Sang Cheol Kim & Donghyeon Yu, 2023. "An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso," Computational Statistics, Springer, vol. 38(1), pages 217-242, March.
- Huangdi Yi & Qingzhao Zhang & Cunjie Lin & Shuangge Ma, 2022. "Information‐incorporated Gaussian graphical model for gene expression data," Biometrics, The International Biometric Society, vol. 78(2), pages 512-523, June.
- Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
- Claudia Angelini & Daniela De Canditiis & Anna Plaksienko, 2021. "Jewel : A Novel Method for Joint Estimation of Gaussian Graphical Models," Mathematics, MDPI, vol. 9(17), pages 1-24, August.
- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Guanghui Cheng & Zhengjun Zhang & Baoxue Zhang, 2017. "Test for bandedness of high-dimensional precision matrices," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 884-902, October.
- Zhang, Qingzhao & Ma, Shuangge & Huang, Yuan, 2021. "Promote sign consistency in the joint estimation of precision matrices," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
- Brownlees, Christian & Mesters, Geert, 2021.
"Detecting granular time series in large panels,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 544-561.
- Christian Brownlees & Geert Mesters, 2017. "Detecting Granular Time Series in Large Panels," Working Papers 991, Barcelona School of Economics.
- Azam Kheyri & Andriette Bekker & Mohammad Arashi, 2022. "High-Dimensional Precision Matrix Estimation through GSOS with Application in the Foreign Exchange Market," Mathematics, MDPI, vol. 10(22), pages 1-19, November.
More about this item
Keywords
D-trace loss; Gaussian graphical models; Generalized Sylvester matrix equation; $$ell _1$$ ℓ 1 Norm; Linear discriminant analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:31:y:2022:i:4:d:10.1007_s11749-022-00807-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.