IDEAS home Printed from https://ideas.repec.org/p/cte/werepe/2888.html
   My bibliography  Save this paper

Missing observations and additive outliers in time series models

Author

Listed:
  • Maravall, Agustín

Abstract

The paper deals with estimation of missing observations in possible nonstationary ARIMA models. First, the model is assumed known, and the structure of the interpolation filter is analyzed. Using the inverse or dual autocorrelation function it is seen how estimation of a missing observation is analogous to the removal of an outlier effect; both problems are closely related with the signal plus noise decomposition of the series. The results are extended to cover, first, the case of a missing observation near the two extremes of the series; then to the case of a sequence of missing observations, and finally to the general case of any number of sequences of any length of missing observations. The optimal estimator can always be expressed, in a compact way, in terms of the dual autocorrelation function or a truncation thereof; is mean squared error is equal to the inverse of the (appropriately chosen) dual autocovariance matrix. The last part of the paper illustrates a point of applied interest: When the model is unknown, the additive outlier approach may provide a convenient and efficient alternative to the standard Kalman filter-fixed point smoother approach for missing observations estimation.

Suggested Citation

  • Maravall, Agustín, 1992. "Missing observations and additive outliers in time series models," UC3M Working papers. Economics 2888, Universidad Carlos III de Madrid. Departamento de Economía.
  • Handle: RePEc:cte:werepe:2888
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/802aacbf-1792-4390-960b-10689ff5d860/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. S. R. Brubacher & G. Tunnicliffe Wilson, 1976. "Interpolating Time Series with Application to the Estimation of Holiday Effects on Electricity Demand," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 107-116, June.
    2. Pena, Daniel, 1990. "Influential Observations in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 235-241, April.
    3. Arnold Zellner, 1978. "Seasonal Analysis of Economic Time Series," NBER Books, National Bureau of Economic Research, Inc, number zell78-1.
    4. Francesco Battaglia, 1983. "Inverse Autocovariances And A Measure Of Linear Determinism For A Stationary Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(2), pages 79-87, March.
    5. Piet De Jong, 1991. "Stable Algorithms For The State Space Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(2), pages 143-157, March.
    6. Maravall, Agustin, 1987. "Minimum Mean Squared Error Estimation of the Noise in Unobserved Component Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(1), pages 115-120, January.
    7. Nerlove, Marc & Grether, David M. & Carvalho, José L., 1979. "Analysis of Economic Time Series," Elsevier Monographs, Elsevier, edition 1, number 9780125157506 edited by Shell, Karl.
    8. William Bell & Steven Hillmer, 1991. "Initializing The Kalman Filter For Nonstationary Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(4), pages 283-300, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Abul Basher & Stefano Fachin, 2014. "Investigating long-run demand for broad money in the Gulf Arab countries," Middle East Development Journal, Taylor & Francis Journals, vol. 6(2), pages 199-214, July.
    2. Chin Wen Cheong & Ng Sew Lai & Nurul Afidah Mohmad Yusof & Khor Chia Ying, 2012. "Asymmetric Fractionally Integrated Volatility Modelling of Asian Equity Markets under the Subprime Mortgage Crisis," Journal of Quantitative Economics, The Indian Econometric Society, vol. 10(1), pages 70-84, January.
    3. Alanya-Beltran, Willy, 2022. "Unit roots in lower-bounded series with outliers," Economic Modelling, Elsevier, vol. 115(C).
    4. Mohamed El Hedi Arouri & Jamel Jouini & Nhu Tuyen Le & Duc Khuong Nguyen, 2012. "On the Relationship between World Oil Prices and GCC Stock Markets," Journal of Quantitative Economics, The Indian Econometric Society, vol. 10(1), pages 98-120, January.
    5. Pedro Delicado & Ana Justel, 1997. "Forecasting with missing data: Application to a real case," Economics Working Papers 213, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Gomez, Victor & Maravall, Agustin & Pena, Daniel, 1998. "Missing observations in ARIMA models: Skipping approach versus additive outlier approach," Journal of Econometrics, Elsevier, vol. 88(2), pages 341-363, November.
    7. Delicado, Pedro, 1995. "Predicción con datos faltantes: aplicación a un caso real," DES - Documentos de Trabajo. Estadística y Econometría. DS 3583, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Gomez & Jorg Breitung, 1999. "The Beveridge–Nelson Decomposition: A Different Perspective with New Results," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 527-535, September.
    2. Gabriele Fiorentini & Enrique Sentana, 2016. "Neglected serial correlation tests in UCARIMA models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 121-178, March.
    3. Gómez, Víctor & Maravall, Agustín, 1993. "Computing missing values in time series," DES - Working Papers. Statistics and Econometrics. WS 3737, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Gianluca Caporello & Agustín Maravall & Fernando J. Sánchez, 2001. "Program TSW Reference Manual," Working Papers 0112, Banco de España.
    5. Kaiser, Regina & Maravall, Agustin, 2005. "Combining filter design with model-based filtering (with an application to business-cycle estimation)," International Journal of Forecasting, Elsevier, vol. 21(4), pages 691-710.
    6. Kenneth Land & David Cantor, 1983. "Arima models of seasonal variation in U. S. birth and death rates," Demography, Springer;Population Association of America (PAA), vol. 20(4), pages 541-568, November.
    7. Maravall, Agustin, 2006. "An application of the TRAMO-SEATS automatic procedure; direct versus indirect adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2167-2190, May.
    8. Victor M. Guerrero & Daniel Peña, 1995. "Linear Combination of Information in Time Series Analysis," Working Papers 9507, Centro de Investigacion Economica, ITAM.
    9. Tommaso Proietti & Stefano Grassi, 2015. "Stochastic trends and seasonality in economic time series: new evidence from Bayesian stochastic model specification search," Empirical Economics, Springer, vol. 48(3), pages 983-1011, May.
    10. Tommaso, Proietti & Stefano, Grassi, 2010. "Bayesian stochastic model specification search for seasonal and calendar effects," MPRA Paper 27305, University Library of Munich, Germany.
    11. Peter Young, 1999. "Recursive and en-bloc approaches to signal extraction," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(1), pages 103-128.
    12. Bernardí Cabrer Borrás & David Iranzo Pérez, 2007. "El Efecto De Los Atentados Del 11-s Sobre El Turismo En España," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 25, pages 365-386, Abril.
    13. Sen Cheong Kon & Lindsay W. Turner, 2005. "Neural Network Forecasting of Tourism Demand," Tourism Economics, , vol. 11(3), pages 301-328, September.
    14. Justel, Ana & Sánchez, María Jesús, 1994. "Grupos atípicos en modelos econométricos," DES - Documentos de Trabajo. Estadística y Econometría. DS 10755, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Breitung, Jörg, 1998. "On model based seasonal adjustment procedures," SFB 373 Discussion Papers 1998,12, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    16. Regina Kaiser & Agustín Maravall, 2002. "A Complete Model-Based Interpretation of the Hodrick-Prescott Filter: Spuriousness Reconsidered," Working Papers 0208, Banco de España.
    17. Ester Ruiz & Fernando Lorenzo, 1997. "Prediction with univariate time series models: The Iberia case," Documentos de Trabajo (working papers) 0298, Department of Economics - dECON.
    18. Agustín Maravall & Fernando J. Sánchez, 2000. "An Application of TRAMO-SEATS: Model Selection and Out-of-Sample Performance: the Swiss CPI Series," Working Papers 0014, Banco de España.
    19. Campos, Julia, 1991. "A Brief Look on the Literature on Deseasonalization," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 11(2), November.
    20. Maravall, Agustín, 2000. "Notes on time serie analysis, ARIMA models and signal extraction," DES - Working Papers. Statistics and Econometrics. WS 10058, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Keywords

    ARIMA models;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:2888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.eco.uc3m.es/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.