Linear combination of information in time series analysis
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Victor M. Guerrero & Daniel Peña, 1995. "Linear Combination of Information in Time Series Analysis," Working Papers 9507, Centro de Investigacion Economica, ITAM.
References listed on IDEAS
- Guerrero, Victor M., 1991. "ARIMA forecasts with restrictions derived from a structural change," International Journal of Forecasting, Elsevier, vol. 7(3), pages 339-347, November.
- S. R. Brubacher & G. Tunnicliffe Wilson, 1976. "Interpolating Time Series with Application to the Estimation of Holiday Effects on Electricity Demand," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 107-116, June.
- Palm, F. & Zellner, A., 1991.
"To combine or not to combine? issues of combining forecasts,"
LIDAM Discussion Papers CORE
1991022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- PALM, Franz C. & ZELLNER, Arnold, 1992. "To Combine or not to Combine? Issues of Combining Forecasts," LIDAM Reprints CORE 1027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pena, Daniel, 1990. "Influential Observations in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 235-241, April.
- Chow, Gregory C & Lin, An-loh, 1971.
"Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series,"
The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
- Tom Doan, "undated". "CHOWLIN: RATS procedure to distribute a series to a higher frequency using related series," Statistical Software Components RTS00036, Boston College Department of Economics.
- Tom Doan, "undated". "DISAGGREGATE: RATS procedure to implement general disaggregation (interpolation/distribution) procedure," Statistical Software Components RTS00050, Boston College Department of Economics.
- Gómez, Víctor & Maravall, Agustín, 1993. "Computing missing values in time series," DES - Working Papers. Statistics and Econometrics. WS 3737, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Daniel O. Stram & William W. S. Wei, 1986. "A Methodological Note On The Disaggregation Of Time Series Totals," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(4), pages 293-302, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Yu-Lieh, 2012. "Measuring business cycles: A temporal disaggregation model with regime switching," Economic Modelling, Elsevier, vol. 29(2), pages 283-290.
- Maravall, Agustín, 1992.
"Missing observations and additive outliers in time series models,"
UC3M Working papers. Economics
2888, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Agustín Maravall & Daniel Peña, 1996. "Missing Observations and Additive Outliers in Time Series Models," Working Papers 9612, Banco de España.
- Gómez, Víctor & Maravall, Agustín, 1993. "Computing missing values in time series," DES - Working Papers. Statistics and Econometrics. WS 3737, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Alejandro Rodríguez Caro & Santiago Rodríguez Feijoo & Delia Dávila Quintana, 2003. "La trimestralización de variables flujo. Un estudio de simulación de los métodos de desagregación temporal con indicador," Documentos de trabajo conjunto ULL-ULPGC 2003-01, Facultad de Ciencias Económicas de la ULPGC.
- Angelini, Elena & Henry, Jerome & Marcellino, Massimiliano, 2006.
"Interpolation and backdating with a large information set,"
Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2693-2724, December.
- Angelini, Elena & Henry, Jérôme & Marcellino, Massimiliano, 2003. "Interpolation and backdating with a large information set," Working Paper Series 252, European Central Bank.
- Henry, Jerome & Marcellino, Massimiliano & Angelini, Elena, 2004. "Interpolation and Backdating with A Large Information Set," CEPR Discussion Papers 4533, C.E.P.R. Discussion Papers.
- Vladim r Hajko, 2015. "Energy-Gross Domestic Product Nexus: Disaggregated Analysis for the Czech Republic in the Post-Transformation Era," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 869-888.
- Baragona, Roberto & Battaglia, Francesco & Calzini, Claudio, 2001. "Genetic algorithms for the identification of additive and innovation outliers in time series," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 1-12, July.
- Enrique M. Quilis, 2018. "Temporal disaggregation of economic time series: The view from the trenches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 447-470, November.
- Chiara Perricone, 2018. "Wavelet analysis for temporal disaggregation," CEIS Research Paper 444, Tor Vergata University, CEIS, revised 29 Oct 2018.
- Kahouli, Sondès, 2011. "Re-examining uranium supply and demand: New insights," Energy Policy, Elsevier, vol. 39(1), pages 358-376, January.
- Jérôme TRINH, 2019. "Temporal disaggregation of short time series with structural breaks: Estimating quarterly data from yearly emerging economies data," Working Papers 2019-11, Center for Research in Economics and Statistics.
- Tommaso Proietti & Alessandro Giovannelli, 2021.
"Nowcasting monthly GDP with big data: A model averaging approach,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 683-706, April.
- Tommaso Proietti & Alessandro Giovannelli, 2020. "Nowcasting Monthly GDP with Big Data: a Model Averaging Approach," CEIS Research Paper 482, Tor Vergata University, CEIS, revised 12 May 2020.
- Justel, Ana & Sánchez, María Jesús, 1994. "Grupos atípicos en modelos econométricos," DES - Documentos de Trabajo. EstadÃstica y EconometrÃa. DS 10755, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Jérôme TRINH, 2019. "Disaggregating the Chinese annual national accounts to quarterly series," THEMA Working Papers 2019-08, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Bu Hyoung Lee, 2022. "Bootstrap Prediction Intervals of Temporal Disaggregation," Stats, MDPI, vol. 5(1), pages 1-13, February.
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Hartwell, Christopher A., 2014. "The impact of institutional volatility on financial volatility in transition economies : a GARCH family approach," BOFIT Discussion Papers 6/2014, Bank of Finland, Institute for Economies in Transition.
- Jérôme Héricourt & Iuliana Matei, 2007.
"Transmission de la politique monétaire dans les pays d'E urope centrale et orientale : que savons-nous vraiment ?,"
Economie & Prévision, La Documentation Française, vol. 0(4), pages 221-238.
- Iuliana Matei & Jérôme Héricourt, 2007. "Transmission de la politique monétaire dans les Pays d'Europe Centrale et Orientale : que savons-nous vraiment ?," Économie et Prévision, Programme National Persée, vol. 180(4), pages 221-238.
- Jérôme Héricourt & Iuliana Matei, 2007. "Transmission de la politique monétaire dans les pays d'Europe Centrale et Orientale : que savons-nous vraiment ?," Post-Print halshs-00515124, HAL.
- Jérôme Héricourt & Iuliana Matei, 2007. "Transmission de la politique monétaire dans les pays d'Europe Centrale et Orientale : que savons-nous vraiment ?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00515124, HAL.
- Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
- Sun, Hang & Bos, Jaap W.B. & Li, Zhuo, 2017. "In the Nick of Time: A Heteroskedastic SVAR Model and Its Application to the Crude Oil Futures Market," Research Memorandum 019, Maastricht University, Graduate School of Business and Economics (GSBE).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:10340. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.