IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/3737.html
   My bibliography  Save this paper

Computing missing values in time series

Author

Listed:
  • Gómez, Víctor
  • Maravall, Agustín

Abstract

This work presents two algorithms to estimate missing values in time series. The first is the Kalman Filter, as developed by Kohn and Ansley (1986) and others. The second is the additive outlier approach, developed by Pefia, Ljung and Maravall. Both are exact and lead to the same results. However, the first is, in general, faster and the second more flexible.

Suggested Citation

  • Gómez, Víctor & Maravall, Agustín, 1993. "Computing missing values in time series," DES - Working Papers. Statistics and Econometrics. WS 3737, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:3737
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/fcfc9977-55e6-4ec1-8a5c-cb6450424fcf/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. R. Brubacher & G. Tunnicliffe Wilson, 1976. "Interpolating Time Series with Application to the Estimation of Holiday Effects on Electricity Demand," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 107-116, June.
    2. Pena, Daniel, 1990. "Influential Observations in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 235-241, April.
    3. Mohsen Pourahmadi, 1989. "Estimation And Interpolation Of Missing Values Of A Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(2), pages 149-169, March.
    4. G. Mélard, 1984. "A Fast Algorithm for the Exact Likelihood of Autoregressive‐Moving Average Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(1), pages 104-114, March.
    5. Guy Melard, 1984. "Algorithm AS197: A fast algorithm for the exact likelihood of autoregressive-moving average models," ULB Institutional Repository 2013/13692, ULB -- Universite Libre de Bruxelles.
    6. Tiao, George C., 1991. "A Note on likelihood estimation of missing values in time series," UC3M Working papers. Economics 2748, Universidad Carlos III de Madrid. Departamento de Economía.
    7. William Bell & Steven Hillmer, 1991. "Initializing The Kalman Filter For Nonstationary Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(4), pages 283-300, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guerrero, Víctor M., 1995. "Linear combination of information in time series analysis," DES - Working Papers. Statistics and Econometrics. WS 10340, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Baragona, Roberto & Battaglia, Francesco & Calzini, Claudio, 2001. "Genetic algorithms for the identification of additive and innovation outliers in time series," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 1-12, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maravall, Agustín, 1992. "Missing observations and additive outliers in time series models," UC3M Working papers. Economics 2888, Universidad Carlos III de Madrid. Departamento de Economía.
    2. Alonso, Andres M. & Sipols, Ana E., 2008. "A time series bootstrap procedure for interpolation intervals," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1792-1805, January.
    3. Victor M. Guerrero & Daniel Peña, 1995. "Linear Combination of Information in Time Series Analysis," Working Papers 9507, Centro de Investigacion Economica, ITAM.
    4. Justel, Ana & Sánchez, María Jesús, 1994. "Grupos atípicos en modelos econométricos," DES - Documentos de Trabajo. Estadística y Econometría. DS 10755, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Cheng, R. & Pourahmadi, M., 1997. "Prediction with incomplete past and interpolation of missing values," Statistics & Probability Letters, Elsevier, vol. 33(4), pages 341-346, May.
    6. Pascal Bondon, 2005. "Influence of Missing Values on the Prediction of a Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 519-525, July.
    7. Kasahara, Yukio & Pourahmadi, Mohsen & Inoue, Akihiko, 2009. "Duals of random vectors and processes with applications to prediction problems with missing values," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1637-1646, July.
    8. André Klein & Guy Melard & Toufik Zahaf, 1998. "Computation of the exact information matrix of Gaussian dynamic regression time series models," ULB Institutional Repository 2013/13738, ULB -- Universite Libre de Bruxelles.
    9. Amélie Charles & Olivier Darné & Laurent Ferrara, 2018. "Does The Great Recession Imply The End Of The Great Moderation? International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 745-760, April.
    10. Victor Gomez & Jorg Breitung, 1999. "The Beveridge–Nelson Decomposition: A Different Perspective with New Results," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 527-535, September.
    11. Regina Kaiser & Agustín Maravall, 2000. "Notes on Time Series Analysis, ARIMA Models and Signal Extraction," Working Papers 0012, Banco de España.
    12. Comincioli, Nicola & Vergalli, Sergio, 2020. "Effects of Carbon Tax on Electricity Price Volatility: Empirical Evidences from the Australian Market," 2030 Agenda 305205, Fondazione Eni Enrico Mattei (FEEM).
    13. Tucker McElroy & Thomas Trimbur, 2015. "Signal Extraction for Non-Stationary Multivariate Time Series with Illustrations for Trend Inflation," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 209-227, March.
    14. Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
    15. Álvarez, Luis J. & Delrieu, Juan C., 1992. "Aproximación lineal por tramos a comportamientos no lineales: estimación de señales de nivel y crecimiento," DES - Documentos de Trabajo. Estadística y Econometría. DS 2940, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. H. Glendinning, Richard, 2001. "Selecting sub-set autoregressions from outlier contaminated data," Computational Statistics & Data Analysis, Elsevier, vol. 36(2), pages 179-207, April.
    17. Min-Hsien Chiang & Ray Yeutien Chou & Li-Min Wang, 2016. "Outlier Detection in the Lognormal Logarithmic Conditional Autoregressive Range Model," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(1), pages 126-144, February.
    18. Vicente Martínez, Eva, 2006. "Properties of two U.S. inflation measures (1985-2005)," DES - Working Papers. Statistics and Econometrics. WS ws066818, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Francisco JA Cysneiros, 2018. "Symmetric Regression Model for Temporal Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 5(2), pages 44-45, February.
    20. González-Sánchez, Mariano, 2021. "Is there a relationship between the time scaling property of asset returns and the outliers? Evidence from international financial markets," Finance Research Letters, Elsevier, vol. 38(C).

    More about this item

    Keywords

    Kalman filter;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:3737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.