IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2020-22.html
   My bibliography  Save this paper

Ring the Alarm! Electricity Markets, Renewables, and the Pandemic

Author

Listed:
  • David BENATIA

    (CREST (UMR 9194), ENSAE, Institut Polytechnique de Paris)

Abstract

The pandemic's impacts on European electricity markets have been enormous, especially in countries with abundant near-zero marginal cost of production like France. This article provides an in-depth quantitative study of the impacts of the crisis on the French electricity sector. During the lockdown episode, France has experienced unparalleled demand reductions (-12%) and energy price falls (-40%) resulting in revenue losses of 1.2 billion € (-45%) for market participants. This paper argues that the observed market outcomes during the crisis are somehow indicative of outcomes in a future with abundant renewable power, where prices will fall in a more sustainable way.

Suggested Citation

  • David BENATIA, 2020. "Ring the Alarm! Electricity Markets, Renewables, and the Pandemic," Working Papers 2020-22, Center for Research in Economics and Statistics, revised 09 Nov 2020.
  • Handle: RePEc:crs:wpaper:2020-22
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2020-22.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Levin, Todd & Botterud, Audun, 2015. "Electricity market design for generator revenue sufficiency with increased variable generation," Energy Policy, Elsevier, vol. 87(C), pages 392-406.
    2. Jacob, Daniel, 2020. "Cross-Fitting and Averaging for Machine Learning Estimation of Heterogeneous Treatment Effects," IRTG 1792 Discussion Papers 2020-014, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    4. James B. Bushnell & Erin T. Mansur & Celeste Saravia, 2008. "Vertical Arrangements, Market Structure, and Competition: An Analysis of Restructured US Electricity Markets," American Economic Review, American Economic Association, vol. 98(1), pages 237-266, March.
    5. Ambec, Stefan & Crampes, Claude, 2012. "Electricity provision with intermittent sources of energy," Resource and Energy Economics, Elsevier, vol. 34(3), pages 319-336.
    6. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    7. Lawrence M. Ausubel & Peter Cramton & Marek Pycia & Marzena Rostek & Marek Weretka, 2014. "Demand Reduction and Inefficiency in Multi-Unit Auctions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(4), pages 1366-1400.
    8. Fabra, Natalia, 2018. "A primer on capacity mechanisms," Energy Economics, Elsevier, vol. 75(C), pages 323-335.
    9. Petitet, Marie & Finon, Dominique & Janssen, Tanguy, 2017. "Capacity adequacy in power markets facing energy transition: A comparison of scarcity pricing and capacity mechanism," Energy Policy, Elsevier, vol. 103(C), pages 30-46.
    10. Henriot, Arthur & Glachant, Jean-Michel, 2013. "Melting-pots and salad bowls: The current debate on electricity market design for integration of intermittent RES," Utilities Policy, Elsevier, vol. 27(C), pages 57-64.
    11. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    12. Gordon W. Leslie & David I. Stern & Akshay Shanker & Michael T. Hogan, 2020. "Designing electricity markets for high penetration of zero or low marginal cost intermittent energy sources," CCEP Working Papers 2002, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    13. Erin T. Mansur, 2007. "Do Oligopolists Pollute Less? Evidence From A Restructured Electricity Market," Journal of Industrial Economics, Wiley Blackwell, vol. 55(4), pages 661-689, December.
    14. David P. Brown & Derek E. H. Olmstead, 2017. "Measuring market power and the efficiency of Alberta's restructured electricity market: An energy-only market design," Canadian Journal of Economics, Canadian Economics Association, vol. 50(3), pages 838-870, August.
    15. Peter Cramton & Steven Stoft, 2006. "The Convergence of Market Designs for Adequate Generating Capacity," Papers of Peter Cramton 06mdfra, University of Maryland, Department of Economics - Peter Cramton, revised 2006.
    16. Severin Borenstein & James B. Bushnell & Frank A. Wolak, 2002. "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market," American Economic Review, American Economic Association, vol. 92(5), pages 1376-1405, December.
    17. Andrew Leach & Nic Rivers & Blake Shaffer, 2020. "Canadian Electricity Markets during the COVID-19 Pandemic: An Initial Assessment," Canadian Public Policy, University of Toronto Press, vol. 46(S2), pages 145-159, August.
    18. Catherine D. Wolfram, 1999. "Measuring Duopoly Power in the British Electricity Spot Market," American Economic Review, American Economic Association, vol. 89(4), pages 805-826, September.
    19. Natalia Fabra & David Rapson & Mar Reguant & Jingyuan Wang, 2021. "Estimating the Elasticity to Real-Time Pricing: Evidence from the Spanish Electricity Market," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 425-429, May.
    20. Fiona Burlig & Christopher Knittel & David Rapson & Mar Reguant & Catherine Wolfram, 2020. "Machine Learning from Schools about Energy Efficiency," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(6), pages 1181-1217.
    21. Sébastien Debia, David Benatia, and Pierre-Olivier Pineau, 2018. "Evaluating an Interconnection Project: Do Strategic Interactions Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    22. Jean Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Cambridge Working Papers in Economics 1354, Faculty of Economics, University of Cambridge.
    23. Alasseur, C. & Féron, O., 2018. "Structural price model for coupled electricity markets," Energy Economics, Elsevier, vol. 75(C), pages 104-119.
    24. Emilio Ghiani & Marco Galici & Mario Mureddu & Fabrizio Pilo, 2020. "Impact on Electricity Consumption and Market Pricing of Energy and Ancillary Services during Pandemic of COVID-19 in Italy," Energies, MDPI, vol. 13(13), pages 1-19, July.
    25. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolae-Marius Jula & Diana-Mihaela Jula & Bogdan Oancea & Răzvan-Mihail Papuc & Dorin Jula, 2023. "Changes in the Pattern of Weekdays Electricity Real Consumption during the COVID-19 Crisis," Energies, MDPI, vol. 16(10), pages 1-20, May.
    2. David BENATIA & Etienne BILLETTE de VILLEMEUR, 2019. "Strategic Reneging in Sequential Imperfect Markets," Working Papers 2019-19, Center for Research in Economics and Statistics.
    3. Arkadiusz Kampczyk & Wojciech Gamon & Katarzyna Gawlak, 2023. "Integration of Traction Electricity Consumption Determinants with Route Geometry and Vehicle Characteristics," Energies, MDPI, vol. 16(6), pages 1-23, March.
    4. Graf, Christoph & Quaglia, Federico & Wolak, Frank A., 2021. "(Machine) learning from the COVID-19 lockdown about electricity market performance with a large share of renewables," Journal of Environmental Economics and Management, Elsevier, vol. 105(C).
    5. Pizarro-Irizar, Cristina, 2023. "Is it all about supply? Demand-side effects on the Spanish electricity market following Covid-19 lockdown policies," Utilities Policy, Elsevier, vol. 80(C).
    6. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    7. Marcin Malec & Grzegorz Kinelski & Marzena Czarnecka, 2021. "The Impact of COVID-19 on Electricity Demand Profiles: A Case Study of Selected Business Clients in Poland," Energies, MDPI, vol. 14(17), pages 1-17, August.
    8. Rahat, Birjees & Nguyen, Pascal, 2022. "Risk-adjusted investment performance of green and black portfolios and impact of toxic divestments in emerging markets," Energy Economics, Elsevier, vol. 116(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    2. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2021. "Can liberalised electricity markets support decarbonised portfolios in line with the Paris Agreement? A case study of Central Western Europe," Energy Policy, Elsevier, vol. 149(C).
    3. David P. Brown & Andrew Eckert, 2018. "Analyzing the Impact of Electricity Market Structure Changes and Mergers: The Importance of Forward Commitments," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 52(1), pages 101-137, February.
    4. Brown, David P. & Eckert, Andrew & Eckert, Heather, 2018. "Carbon pricing with an output subsidy under imperfect competition: The case of Alberta's restructured electricity market," Resource and Energy Economics, Elsevier, vol. 52(C), pages 102-123.
    5. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    6. Juha Teirilä and Robert A. Ritz, 2019. "Strategic Behaviour in a Capacity Market? The New Irish Electricity Market Design," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    7. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    8. Brown, David P. & Eckert, Andrew & Shaffer, Blake, 2023. "Evaluating the impact of divestitures on competition: Evidence from Alberta’s wholesale electricity market," International Journal of Industrial Organization, Elsevier, vol. 89(C).
    9. Simshauser, Paul & Tian, Yuan & Whish-Wilson, Patrick, 2015. "Vertical integration in energy-only electricity markets," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 35-56.
    10. Klaus Eisenack & Mathias Mier, 2019. "Peak-load pricing with different types of dispatchability," Journal of Regulatory Economics, Springer, vol. 56(2), pages 105-124, December.
    11. David BENATIA & Etienne BILLETTE de VILLEMEUR, 2019. "Strategic Reneging in Sequential Imperfect Markets," Working Papers 2019-19, Center for Research in Economics and Statistics.
    12. de Frutos, María-Ángeles & Fabra, Natalia, 2012. "How to allocate forward contracts: The case of electricity markets," European Economic Review, Elsevier, vol. 56(3), pages 451-469.
    13. Zipp, Alexander, 2017. "The marketability of variable renewable energy in liberalized electricity markets – An empirical analysis," Renewable Energy, Elsevier, vol. 113(C), pages 1111-1121.
    14. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    15. David P. Brown & Derek E. H. Olmstead, 2017. "Measuring market power and the efficiency of Alberta's restructured electricity market: An energy-only market design," Canadian Journal of Economics, Canadian Economics Association, vol. 50(3), pages 838-870, August.
    16. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    17. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    18. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    19. David P. Brown & Andrew Eckert, 2017. "Electricity market mergers with endogenous forward contracting," Journal of Regulatory Economics, Springer, vol. 51(3), pages 269-310, June.
    20. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).

    More about this item

    Keywords

    Energy Transition; COVID-19; Demand; Electricity Markets;
    All these keywords.

    JEL classification:

    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2020-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.