IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2011-30.html
   My bibliography  Save this paper

Estimating the Marginal Law of a Time Series with Applications to Heavy Tailed Distributions

Author

Listed:
  • Christian Francq

    (CREST)

  • Jean-Michel Zakoïan

    (CREST)

Abstract

This article addresses estimating parametric marginal densities of stationary time series in the absence of precise information on the dynamics of the underlying process. We propose using an estimator obtained by maximization of the "quasi-marginal" likelihood, which is a likelihood written as if the observations were independent. We study the effect of the (neglected) dynamics on the asymptotic behavior of this estimator. The consistency and asymptotic normality of the estimator are established under mild assumptions on the dependence structure. Applications of the asymptotic results to the estimation of stable, generalized extreme value and generalized Pareto distributions are proposed. The theoretical results are illustrated on financial index returns. Supplementary materials for this article are available online.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Christian Francq & Jean-Michel Zakoïan, 2011. "Estimating the Marginal Law of a Time Series with Applications to Heavy Tailed Distributions," Working Papers 2011-30, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2011-30
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2011-30.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    2. Suhasini Subba Rao, 2010. "Handbook of Financial Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 64-64, January.
    3. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    4. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    5. Gamini Premaratne, 2005. "A Test for Symmetry with Leptokurtic Financial Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 169-187.
    6. Stephen J. Taylor, 2007. "Introduction to Asset Price Dynamics, Volatility, and Prediction," Introductory Chapters, in: Asset Price Dynamics, Volatility, and Prediction, Princeton University Press.
    7. Shiqing Ling & Michael McAleer, 2010. "A general asymptotic theory for time‐series models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 97-111, February.
    8. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
    9. Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012. "Computing and estimating information matrices of weak ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.
    10. Wang, Hansheng & Tsai, Chih-Ling, 2009. "Tail Index Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1233-1240.
    11. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    12. Einmahl, John H. J. & Li, Jun & Liu, Regina Y., 2009. "Thresholding Events of Extreme in Simultaneous Monitoring of Multiple Risks," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 982-992.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Auray, Stéphane & Eyquem, Aurélien & Jouneau-Sion, Frédéric, 2014. "Modeling tails of aggregate economic processes in a stochastic growth model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 76-94.
    2. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    3. Delaigle, Aurore & Meister, Alexander & Rombouts, Jeroen, 2016. "Root-T consistent density estimation in GARCH models," Journal of Econometrics, Elsevier, vol. 192(1), pages 55-63.
    4. Preminger, Arie & Storti, Giuseppe, 2014. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," MPRA Paper 59082, University Library of Munich, Germany.
    5. Echaust Krzysztof, 2014. "A Comparison of Tail Behaviour of Stock Market Returns," Folia Oeconomica Stetinensia, Sciendo, vol. 14(1), pages 22-34, June.
    6. Christian H. Weiß, 2018. "Goodness-of-fit testing of a count time series’ marginal distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 619-651, August.
    7. Valentin Courgeau & Almut E.D. Veraart, 2022. "Asymptotic theory for the inference of the latent trawl model for extreme values," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1448-1495, December.
    8. Zhang, Xingfa & Zhang, Rongmao & Li, Yuan & Ling, Shiqing, 2022. "LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise," Journal of Econometrics, Elsevier, vol. 227(1), pages 228-240.
    9. Yang, Yaxing & Ling, Shiqing, 2017. "Self-weighted LAD-based inference for heavy-tailed threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 197(2), pages 368-381.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    4. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    5. Moore, Kyle & Sun, Pengfei & de Vries, Casper G. & Zhou, Chen, 2013. "The cross-section of tail risks in stock returns," MPRA Paper 45592, University Library of Munich, Germany.
    6. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    7. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    8. Francesco Lisi, 2007. "Testing asymmetry in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 687-696.
    9. Longin, Francois, 2005. "The choice of the distribution of asset returns: How extreme value theory can help?," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 1017-1035, April.
    10. Ibragimov, Rustam, 2014. "On the robustness of location estimators in models of firm growth under heavy-tailedness," Journal of Econometrics, Elsevier, vol. 181(1), pages 25-33.
    11. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2551-2569, August.
    12. Andrea Morone, 2008. "Financial markets in the laboratory: an experimental analysis of some stylized facts," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 513-532.
    13. Rustam Ibragimov & Marat Ibragimov & Rufat Khamidov, 2010. "Measuring Inequality in CIS Countries: Theory and Empirics," wiiw Balkan Observatory Working Papers 88, The Vienna Institute for International Economic Studies, wiiw.
    14. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    15. ROCKINGER, Michael & JONDEAU, Eric, 1999. "The Tail Behavior of Stock Returns: Emerging versus Mature Markets," HEC Research Papers Series 668, HEC Paris.
    16. Ibragimov, Rustam & Walden, Johan, 2008. "Portfolio diversification under local and moderate deviations from power laws," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 594-599, April.
    17. Stanley, H.E. & Gopikrishnan, P. & Plerou, V. & Amaral, L.A.N., 2000. "Quantifying fluctuations in economic systems by adapting methods of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 339-361.
    18. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    19. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
    20. K. D. Patterson & S. M. Heravi, 2003. "The impact of fat-tailed distributions on some leading unit roots tests," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(6), pages 635-667.

    More about this item

    Keywords

    alpha-stable distribution; composite likelihood; GEV distribution; GPD; pseudo-likelihood; quasi-marginal maximum likelihood; stock returns distributions;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2011-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.