IDEAS home Printed from https://ideas.repec.org/p/crm/wpaper/2422.html
   My bibliography  Save this paper

Empirical Bayes Methods in Labor Economics

Author

Listed:
  • Christopher Walters

    (UC Berkeley)

Abstract

Labor economists increasingly work in empirical contexts with large numbers of unit-specific parameters. These settings include a growing number of value-added studies measuring causal effects of individual units like firms, managers, neighborhoods, teachers, schools, doctors, hospitals, police officers, and judges. Empirical Bayes (EB) methods provide a powerful toolkit for value-added analysis. The EB approach leverages distributional information from the full population of units to refine predictions of value-added for each individual, leading to improved estimators and decision rules. This chapter offers an overview of EB methods in labor economics, focusing on properties that make EB useful for value-added studies and practical guidance for EB implementation. Applications to school value-added in Boston and employer-level discrimination in the US labor market illustrate the EB toolkit in action.

Suggested Citation

  • Christopher Walters, 2024. "Empirical Bayes Methods in Labor Economics," RF Berlin - CReAM Discussion Paper Series 2422, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
  • Handle: RePEc:crm:wpaper:2422
    as

    Download full text from publisher

    File URL: https://www.rfberlin.com/wp-content/uploads/2024/10/24022.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Kline & Evan K. Rose & Christopher R. Walters, 2024. "A Discrimination Report Card," American Economic Review, American Economic Association, vol. 114(8), pages 2472-2525, August.
    2. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    3. David Card & Jörg Heining & Patrick Kline, 2013. "Workplace Heterogeneity and the Rise of West German Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(3), pages 967-1015.
    4. Alberto Abadie & Maximilian Kasy, 2019. "Choosing Among Regularized Estimators in Empirical Economics: The Risk of Machine Learning," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 743-762, December.
    5. Felipe Goncalves & Steven Mello, 2021. "A Few Bad Apples? Racial Bias in Policing," American Economic Review, American Economic Association, vol. 111(5), pages 1406-1441, May.
    6. Stéphane Bonhomme & Thibaut Lamadon & Elena Manresa, 2019. "A Distributional Framework for Matched Employer Employee Data," Econometrica, Econometric Society, vol. 87(3), pages 699-739, May.
    7. Jason Abaluck & Mauricio Caceres Bravo & Peter Hull: & Amanda Starc, 2021. "Mortality Effects and Choice Across Private Health Insurance Plans," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(3), pages 1557-1610.
    8. Evan K. Rose & Jonathan T. Schellenberg & Yotam Shem-Tov, 2022. "The Effects of Teacher Quality on Adult Criminal Justice Contact," NBER Working Papers 30274, National Bureau of Economic Research, Inc.
    9. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    10. Manski, Charles F., 2000. "Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice," Journal of Econometrics, Elsevier, vol. 95(2), pages 415-442, April.
    11. Dan Goldhaber & Betheny Gross & Daniel Player, 2011. "Teacher career paths, teacher quality, and persistence in the classroom: Are public schools keeping their best?," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 30(1), pages 57-87, December.
    12. David Card & Ana Rute Cardoso & Patrick Kline, 2016. "Bargaining, Sorting, and the Gender Wage Gap: Quantifying the Impact of Firms on the Relative Pay of Women," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 633-686.
    13. Stacy Berg Dale & Alan B. Krueger, 2002. "Estimating the Payoff to Attending a More Selective College: An Application of Selection on Observables and Unobservables," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1491-1527.
    14. Atila Abdulkadiroğlu & Joshua D. Angrist & Susan M. Dynarski & Thomas J. Kane & Parag A. Pathak, 2011. "Accountability and Flexibility in Public Schools: Evidence from Boston's Charters And Pilots," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(2), pages 699-748.
    15. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    16. Marianne Bertrand & Sendhil Mullainathan, 2004. "Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination," American Economic Review, American Economic Association, vol. 94(4), pages 991-1013, September.
    17. Stephane Bonhomme & Angela Denis, 2024. "Estimating Heterogeneous Effects: Applications to Labor Economics," Papers 2404.01495, arXiv.org.
    18. Raj Chetty & John N. Friedman & Nathaniel Hendren & Maggie R. Jones & Sonya R. Porter, 2018. "The Opportunity Atlas: Mapping the Childhood Roots of Social Mobility," NBER Working Papers 25147, National Bureau of Economic Research, Inc.
    19. Roger Koenker & Ivan Mizera, 2014. "Convex Optimization, Shape Constraints, Compound Decisions, and Empirical Bayes Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 674-685, June.
    20. repec:mpr:mprres:6857 is not listed on IDEAS
    21. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    2. Kline, Patrick & Walters, Christopher, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Institute for Research on Labor and Employment, Working Paper Series qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
    3. Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
    4. Patrick Kline & Raffaele Saggio & Mikkel Sølvsten, 2020. "Leave‐Out Estimation of Variance Components," Econometrica, Econometric Society, vol. 88(5), pages 1859-1898, September.
    5. Patrick Kline & Christopher Walters, 2021. "Reasonable Doubt: Experimental Detection of Job‐Level Employment Discrimination," Econometrica, Econometric Society, vol. 89(2), pages 765-792, March.
    6. Lachowska, Marta & Mas, Alexandre & Saggio, Raffaele & Woodbury, Stephen A., 2023. "Do firm effects drift? Evidence from Washington administrative data," Journal of Econometrics, Elsevier, vol. 233(2), pages 375-395.
    7. Timothy B. Armstrong & Michal Koles'ar & Mikkel Plagborg-M{o}ller, 2020. "Robust Empirical Bayes Confidence Intervals," Papers 2004.03448, arXiv.org, revised May 2022.
    8. Rasmus Lentz & Jean Marc Robin & Suphanit Piyapromdee, 2018. "On Worker and Firm Heterogeneity in Wages and Employment Mobility: Evidence from Danish Register Data," 2018 Meeting Papers 469, Society for Economic Dynamics.
    9. Christopher Taber & Rune Vejlin, 2020. "Estimation of a Roy/Search/Compensating Differential Model of the Labor Market," Econometrica, Econometric Society, vol. 88(3), pages 1031-1069, May.
    10. David Card & Ana Rute Cardoso & Joerg Heining & Patrick Kline, 2018. "Firms and Labor Market Inequality: Evidence and Some Theory," Journal of Labor Economics, University of Chicago Press, vol. 36(S1), pages 13-70.
    11. Moser, Christian, 2016. "How Could Wage Inequality Within and Across Enterprises be Reduced?," MPRA Paper 95381, University Library of Munich, Germany.
    12. Fanfani, Bernardo, 2022. "Tastes for discrimination in monopsonistic labour markets," Labour Economics, Elsevier, vol. 75(C).
    13. Hannah Illing & Johannes Schmieder & Simon Trenkle, 2024. "The Gender Gap in Earnings Losses After Job Displacement," Journal of the European Economic Association, European Economic Association, vol. 22(5), pages 2108-2147.
    14. Di Addario, Sabrina & Kline, Patrick & Saggio, Raffaele & Sølvsten, Mikkel, 2023. "It ain’t where you’re from, it’s where you’re at: Hiring origins, firm heterogeneity, and wages," Journal of Econometrics, Elsevier, vol. 233(2), pages 340-374.
    15. Gallen, Yana & Lesner, Rune V. & Vejlin, Rune, 2019. "The labor market gender gap in Denmark: Sorting out the past 30 years," Labour Economics, Elsevier, vol. 56(C), pages 58-67.
    16. Arellano-Bover, Jaime & Saltiel, Fernando, 2021. "Differences in On-the-Job Learning across Firms," IZA Discussion Papers 14473, Institute of Labor Economics (IZA).
    17. Jorge Alvarez & Felipe Benguria & Niklas Engbom & Christian Moser, 2018. "Firms and the Decline in Earnings Inequality in Brazil," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(1), pages 149-189, January.
    18. Morchio, Iacopo & Moser, Christian, 2018. "The Gender Pay Gap: Micro Sources and Macro Consequences," MPRA Paper 99276, University Library of Munich, Germany, revised 24 Mar 2020.
    19. Paul Brandily & Camille Hémet & Clément Malgouyres, 2022. "Understanding the Reallocation of Displaced Workers to Firms," Working Papers halshs-03082302, HAL.
    20. Benjamin Lochner & Bastian Schulz, 2024. "Firm Productivity, Wages, and Sorting," Journal of Labor Economics, University of Chicago Press, vol. 42(1), pages 85-119.

    More about this item

    Keywords

    empirical Bayes; labor economics; value-added; shrinkage; Bayesian methods; multiple testing;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crm:wpaper:2422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CReAM Administrator or Matthew Nibloe (email available below). General contact details of provider: https://edirc.repec.org/data/cmucluk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.