IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v90y2022i6p2567-2602.html
   My bibliography  Save this article

Robust Empirical Bayes Confidence Intervals

Author

Listed:
  • Timothy B. Armstrong
  • Michal Kolesár
  • Mikkel Plagborg‐Møller

Abstract

We construct robust empirical Bayes confidence intervals (EBCIs) in a normal means problem. The intervals are centered at the usual linear empirical Bayes estimator, but use a critical value accounting for shrinkage. Parametric EBCIs that assume a normal distribution for the means (Morris (1983b)) may substantially undercover when this assumption is violated. In contrast, our EBCIs control coverage regardless of the means distribution, while remaining close in length to the parametric EBCIs when the means are indeed Gaussian. If the means are treated as fixed, our EBCIs have an average coverage guarantee: the coverage probability is at least 1 − α on average across the n EBCIs for each of the means. Our empirical application considers the effects of U.S. neighborhoods on intergenerational mobility.

Suggested Citation

  • Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
  • Handle: RePEc:wly:emetrp:v:90:y:2022:i:6:p:2567-2602
    DOI: 10.3982/ECTA18597
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA18597
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA18597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    2. Thomas J. Kane & Douglas O. Staiger, 2008. "Estimating Teacher Impacts on Student Achievement: An Experimental Evaluation," NBER Working Papers 14607, National Bureau of Economic Research, Inc.
    3. Raj Chetty & Nathaniel Hendren, 2018. "The Impacts of Neighborhoods on Intergenerational Mobility I: Childhood Exposure Effects," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1107-1162.
    4. Hansen, Bruce E., 2016. "Efficient shrinkage in parametric models," Journal of Econometrics, Elsevier, vol. 190(1), pages 115-132.
    5. Raj Chetty & John N. Friedman & Jonah E. Rockoff, 2014. "Measuring the Impacts of Teachers I: Evaluating Bias in Teacher Value-Added Estimates," American Economic Review, American Economic Association, vol. 104(9), pages 2593-2632, September.
    6. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    7. Roger Koenker & Ivan Mizera, 2014. "Convex Optimization, Shape Constraints, Compound Decisions, and Empirical Bayes Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 674-685, June.
    8. Stéphane Bonhomme & Martin Weidner, 2019. "Posterior average effects," CeMMAP working papers CWP43/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Alberto Abadie & Maximilian Kasy, 2019. "Choosing Among Regularized Estimators in Empirical Economics: The Risk of Machine Learning," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 743-762, December.
    10. Brian A. Jacob & Lars Lefgren, 2008. "Can Principals Identify Effective Teachers? Evidence on Subjective Performance Evaluation in Education," Journal of Labor Economics, University of Chicago Press, vol. 26(1), pages 101-136.
    11. Bradley Efron, 2015. "Frequentist accuracy of Bayesian estimates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 617-646, June.
    12. Joshua D. Angrist & Peter D. Hull & Parag A. Pathak & Christopher R. Walters, 2017. "Leveraging Lotteries for School Value-Added: Testing and Estimation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 871-919.
    13. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    14. Raj Chetty & Nathaniel Hendren, 2018. "The Impacts of Neighborhoods on Intergenerational Mobility II: County-Level Estimates," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1163-1228.
    15. Yoav Benjamini & Daniel Yekutieli, 2005. "False Discovery Rate-Adjusted Multiple Confidence Intervals for Selected Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 71-81, March.
    16. Stéphane Bonhomme & Martin Weidner, 2021. "Posterior average effects," CeMMAP working papers CWP36/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Xianchao Xie & S. C. Kou & Lawrence D. Brown, 2012. "SURE Estimates for a Heteroscedastic Hierarchical Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1465-1479, December.
    18. T. Tony Cai & Mark Low & Zongming Ma, 2014. "Adaptive Confidence Bands for Nonparametric Regression Functions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1054-1070, September.
    19. Koenker, Roger & Mizera, Ivan, 2014. "Convex Optimization in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i05).
    20. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.
    2. Evan T.R. Rosenman & Guillaume Basse & Art B. Owen & Mike Baiocchi, 2023. "Combining observational and experimental datasets using shrinkage estimators," Biometrics, The International Biometric Society, vol. 79(4), pages 2961-2973, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy B. Armstrong & Michal Koles'ar & Mikkel Plagborg-M{o}ller, 2020. "Robust Empirical Bayes Confidence Intervals," Papers 2004.03448, arXiv.org, revised May 2022.
    2. Stéphane Bonhomme & Martin Weidner, 2019. "Posterior average effects," CeMMAP working papers CWP43/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Christine Mulhern & Isaac M. Opper, 2021. "Measuring and Summarizing the Multiple Dimensions of Teacher Effectiveness," CESifo Working Paper Series 9263, CESifo.
    4. Valentin Verdier, 2020. "Estimation and Inference for Linear Models with Two-Way Fixed Effects and Sparsely Matched Data," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 1-16, March.
    5. Mookerjee, Sulagna & Slichter, David, 2023. "Test scores, schools, and the geography of economic opportunity," Journal of Urban Economics, Elsevier, vol. 137(C).
    6. Bär, Marlies & Bakx, Pieter & Wouterse, Bram & van Doorslaer, Eddy, 2022. "Estimating the health value added by nursing homes," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 1-23.
    7. Patrick Kline & Christopher Walters, 2021. "Reasonable Doubt: Experimental Detection of Job‐Level Employment Discrimination," Econometrica, Econometric Society, vol. 89(2), pages 765-792, March.
    8. Michael Gilraine & Jiaying Gu & Robert McMillan, 2020. "A New Method for Estimating Teacher Value-Added," NBER Working Papers 27094, National Bureau of Economic Research, Inc.
    9. Kline, Patrick & Walters, Christopher, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Institute for Research on Labor and Employment, Working Paper Series qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
    10. Raffaella Giacomini & Sokbae Lee & Silvia Sarpietro, 2023. "A Robust Method for Microforecasting and Estimation of Random Effects," Working Paper Series WP 2023-26, Federal Reserve Bank of Chicago.
    11. Michael Gilraine & Jiaying Gu & Robert McMillan, 2021. "A Nonparametric Method for Estimating Teacher Value-Added," Working Papers tecipa-689, University of Toronto, Department of Economics.
    12. Bar, M.; & Bakx, P.; & Wouterse, B.; & van Doorslaer, Eddy.;, 2022. "Estimating the health value added by nursing homes," Health, Econometrics and Data Group (HEDG) Working Papers 22/12, HEDG, c/o Department of Economics, University of York.
    13. Nirav Mehta, 2019. "Measuring quality for use in incentive schemes: The case of “shrinkage” estimators," Quantitative Economics, Econometric Society, vol. 10(4), pages 1537-1577, November.
    14. Christopher Walters, 2024. "Empirical Bayes Methods in Labor Economics," RF Berlin - CReAM Discussion Paper Series 2422, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
    15. Robert Ainsworth & Rajeev Dehejia & Cristian Pop-Eleches & Miguel Urquiola, 2023. "Why Do Households Leave School Value Added on the Table? The Roles of Information and Preferences," American Economic Review, American Economic Association, vol. 113(4), pages 1049-1082, April.
    16. Manuel Arellano & Stéphane Bonhomme, 2023. "Recovering Latent Variables by Matching," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 693-706, January.
    17. Bruhn, Jesse & Imberman, Scott & Winters, Marcus, 2022. "Regulatory arbitrage in teacher hiring and retention: Evidence from Massachusetts Charter Schools," Journal of Public Economics, Elsevier, vol. 215(C).
    18. Alberto Abadie & Maximilian Kasy, 2019. "Choosing Among Regularized Estimators in Empirical Economics: The Risk of Machine Learning," The Review of Economics and Statistics, MIT Press, vol. 101(5), pages 743-762, December.
    19. Mike Gilraine & Jiaying Gu & Robert McMillan, 2022. "A Nonparametric Approach for Studying Teacher Impacts," Working Papers tecipa-716, University of Toronto, Department of Economics.
    20. Jiaying Gu & Roger Koenker, 2020. "Invidious Comparisons: Ranking and Selection as Compound Decisions," Papers 2012.12550, arXiv.org, revised Sep 2021.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:90:y:2022:i:6:p:2567-2602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.