IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/15139.html
   My bibliography  Save this paper

Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits

Author

Listed:
  • Greenstone, Michael
  • Carleton, Tamma
  • Jina, Amir
  • Delgado, Michael
  • Hsiang, Solomon M.
  • Hultgren, Andrew
  • Kopp, Robert
  • McCusker, Kelly
  • Nath, Ishan
  • Rising, James
  • Rode, Ashwin
  • Seo, Hee Kwon (Samuel)
  • Viaene, Arvid
  • Yuan, Jiacan
  • Zhang, Alice Tianbo

Abstract

Using 40 countries’ subnational data, we estimate age-specific mortality-temperature relationships and extrapolate them to countries without data today and into a future with climate change. We uncover a U-shaped relationship where extreme cold and hot temperatures increase mortality rates, especially for the elderly. Critically, this relationship is flattened by both higher incomes and adaptation to local climate. Using a revealed preference approach to recover unobserved adaptation costs, we estimate that the mean global increase in mortality risk due to climate change, accounting for adaptation benefits and costs, is valued at roughly 3.2% of global GDP in 2100 under a high emissions scenario. Notably, today’s cold locations are projected to benefit, while today’s poor and hot locations have large projected damages. Finally, our central estimates indicate that the release of an additional ton of CO2 today will cause mortality-related damages of $36.6 under a high emissions scenario and using a 2% discount rate, with an interquartile range accounting for both econometric and climate uncertainty of [-$7.8, $73.0]. Under a moderate emissions scenario, these damages are valued at $17.1 [-$24.7, $53.6]. These empirically grounded estimates exceed the previous literature’s estimates by an order of magnitude.

Suggested Citation

  • Greenstone, Michael & Carleton, Tamma & Jina, Amir & Delgado, Michael & Hsiang, Solomon M. & Hultgren, Andrew & Kopp, Robert & McCusker, Kelly & Nath, Ishan & Rising, James & Rode, Ashwin & Seo, Hee K, 2020. "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits," CEPR Discussion Papers 15139, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:15139
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP15139
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tatyana Deryugina & Garth Heutel & Nolan H. Miller & David Molitor & Julian Reif, 2019. "The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction," American Economic Review, American Economic Association, vol. 109(12), pages 4178-4219, December.
    2. Barreca, Alan I., 2012. "Climate change, humidity, and mortality in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 63(1), pages 19-34.
    3. Frances C. Moore & David B. Lobell, 2014. "Adaptation potential of European agriculture in response to climate change," Nature Climate Change, Nature, vol. 4(7), pages 610-614, July.
    4. Thiemo Fetzer, 2014. "Can Workfare Programs Moderate Violence? Evidence from India," STICERD - Economic Organisation and Public Policy Discussion Papers Series 53, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Solomon M. Hsiang & Daiju Narita, 2012. "Adaptation To Cyclone Risk: Evidence From The Global Cross-Section," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-28.
    6. Derek Lemoine, 2018. "Estimating the Consequences of Climate Change from Variation in Weather," NBER Working Papers 25008, National Bureau of Economic Research, Inc.
    7. W. Kip Viscusi, 2015. "The Role of Publication Selection Bias in Estimates of the Value of a Statistical Life," American Journal of Health Economics, University of Chicago Press, vol. 1(1), pages 27-52, Winter.
    8. Solomon Hsiang & Robert E. Kopp, 2018. "An Economist's Guide to Climate Change Science," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 3-32, Fall.
    9. Olivier Deschênes & Michael Greenstone & Joseph S. Shapiro, 2017. "Defensive Investments and the Demand for Air Quality: Evidence from the NOx Budget Program," American Economic Review, American Economic Association, vol. 107(10), pages 2958-2989, October.
    10. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    11. Garth Heutel & Nolan H. Miller & David Molitor, 2021. "Adaptation and the Mortality Effects of Temperature across U.S. Climate Regions," The Review of Economics and Statistics, MIT Press, vol. 103(4), pages 740-753, October.
    12. Maximilian Auffhammer & Anin Aroonruengsawat, 2011. "Simulating the impacts of climate change, prices and population on California’s residential electricity consumption," Climatic Change, Springer, vol. 109(1), pages 191-210, December.
    13. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    14. Thiemo Fetzer, 2020. "Can Workfare Programs Moderate Conflict? Evidence from India," Journal of the European Economic Association, European Economic Association, vol. 18(6), pages 3337-3375.
    15. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    16. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    17. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    18. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    19. Marshall Burke & John Dykema & David B. Lobell & Edward Miguel & Shanker Satyanath, 2015. "Incorporating Climate Uncertainty into Estimates of Climate Change Impacts," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 461-471, May.
    20. Olivier Deschenes, 2018. "Temperature Variability and Mortality: Evidence from 16 Asian Countries," Asian Development Review, MIT Press, vol. 35(2), pages 1-30, September.
    21. Thiemo Fetzer, 2014. "Can Workfare Programs Moderate Violence? Evidence from India," STICERD - Economic Organisation and Public Policy Discussion Papers Series 053, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    22. Guo, Christopher & Costello, Christopher, 2013. "The value of adaption: Climate change and timberland management," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 452-468.
    23. Kelly, David L. & Kolstad, Charles D. & Mitchell, Glenn T., 2005. "Adjustment costs from environmental change," Journal of Environmental Economics and Management, Elsevier, vol. 50(3), pages 468-495, November.
    24. Maximilian Auffhammer, 2018. "Climate Adaptive Response Estimation: Short And Long Run Impacts Of Climate Change On Residential Electricity and Natural Gas Consumption Using Big Data," NBER Working Papers 24397, National Bureau of Economic Research, Inc.
    25. Gary Solon & Steven J. Haider & Jeffrey M. Wooldridge, 2015. "What Are We Weighting For?," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 301-316.
    26. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    27. Michael Greenstone & Elizabeth Kopits & Ann Wolverton, 2013. "Developing a Social Cost of Carbon for US Regulatory Analysis: A Methodology and Interpretation," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 23-46, January.
    28. Orley Ashenfelter & Michael Greenstone, 2004. "Using Mandated Speed Limits to Measure the Value of a Statistical Life," Journal of Political Economy, University of Chicago Press, vol. 112(S1), pages 226-267, February.
    29. Kopp, Robert E. & Mignone, Bryan K., 2012. "The US government's social cost of carbon estimates after their first two years: Pathways for improvement," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-41.
    30. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    31. Matthew E. Kahn, 2005. "The Death Toll from Natural Disasters: The Role of Income, Geography, and Institutions," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 271-284, May.
    32. Solomon M. Hsiang & Amir S. Jina, 2014. "The Causal Effect of Environmental Catastrophe on Long-Run Economic Growth: Evidence From 6,700 Cyclones," NBER Working Papers 20352, National Bureau of Economic Research, Inc.
    33. Solomon M. Hsiang & Kyle C. Meng & Mark A. Cane, 2011. "Civil conflicts are associated with the global climate," Nature, Nature, vol. 476(7361), pages 438-441, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamma Carleton & Amir Jina & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Robert E Kopp & Kelly E McCusker & Ishan Nath & James Rising & Ashwin Rode & Hee , 2023. "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits," Journal of Economic Geography, Oxford University Press, vol. 137(4), pages 2037-2105.
    2. Solomon Hsiang & Paulina Oliva & Reed Walker, 2019. "The Distribution of Environmental Damages," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 13(1), pages 83-103.
    3. Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021. "The GDP-Temperature relationship: Implications for climate change damages," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. Solomon M. Hsiang & Amir S. Jina, 2014. "The Causal Effect of Environmental Catastrophe on Long-Run Economic Growth: Evidence From 6,700 Cyclones," NBER Working Papers 20352, National Bureau of Economic Research, Inc.
    6. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Dundas, Steven J. & von Haefen, Roger H., 2019. "The Effects of Weather on Recreational Fishing Demand and Adaptation: Implications for a Changing Climate," CEnREP Working Papers 283949, North Carolina State University, Department of Agricultural and Resource Economics.
    8. Bento, Antonio M. & Miller, Noah & Mookerjee, Mehreen & Severnini, Edson, 2023. "A unifying approach to measuring climate change impacts and adaptation," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    9. Nathan W. Chan & Casey J. Wichman, 2020. "Climate Change and Recreation: Evidence from North American Cycling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(1), pages 119-151, May.
    10. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    11. Boustan, Leah Platt & Kahn, Matthew E. & Rhode, Paul W. & Yanguas, Maria Lucia, 2020. "The effect of natural disasters on economic activity in US counties: A century of data," Journal of Urban Economics, Elsevier, vol. 118(C).
    12. Graff Zivin, Joshua & Song, Yingquan & Tang, Qu & Zhang, Peng, 2020. "Temperature and high-stakes cognitive performance: Evidence from the national college entrance examination in China," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    13. Baysan, Ceren & Burke, Marshall & González, Felipe & Hsiang, Solomon & Miguel, Edward, 2019. "Non-economic factors in violence: Evidence from organized crime, suicides and climate in Mexico," Journal of Economic Behavior & Organization, Elsevier, vol. 168(C), pages 434-452.
    14. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    15. Letta, Marco & Montalbano, Pierluigi & Tol, Richard S.J., 2018. "Temperature shocks, short-term growth and poverty thresholds: Evidence from rural Tanzania," World Development, Elsevier, vol. 112(C), pages 13-32.
    16. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    17. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.
    18. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.
    19. Holtermann, Linus & Rische, Marie-Christin, 2020. "The Subnational Effect of Temperature on Economic Production: A Disaggregated Analysis in European Regions," MPRA Paper 104606, University Library of Munich, Germany.
    20. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Climate and Conflict," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 577-617, August.

    More about this item

    JEL classification:

    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • H41 - Public Economics - - Publicly Provided Goods - - - Public Goods
    • I14 - Health, Education, and Welfare - - Health - - - Health and Inequality

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:15139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.