IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/18859.html
   My bibliography  Save this paper

What Are We Weighting For?

Author

Listed:
  • Gary Solon
  • Steven J. Haider
  • Jeffrey Wooldridge

Abstract

The purpose of this paper is to help empirical economists think through when and how to weight the data used in estimation. We start by distinguishing two purposes of estimation: to estimate population descriptive statistics and to estimate causal effects. In the former type of research, weighting is called for when it is needed to make the analysis sample representative of the target population. In the latter type, the weighting issue is more nuanced. We discuss three distinct potential motives for weighting when estimating causal effects: (1) to achieve precise estimates by correcting for heteroskedasticity, (2) to achieve consistent estimates by correcting for endogenous sampling, and (3) to identify average partial effects in the presence of unmodeled heterogeneity of effects. In each case, we find that the motive sometimes does not apply in situations where practitioners often assume it does. We recommend diagnostics for assessing the advisability of weighting, and we suggest methods for appropriate inference.

Suggested Citation

  • Gary Solon & Steven J. Haider & Jeffrey Wooldridge, 2013. "What Are We Weighting For?," NBER Working Papers 18859, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:18859
    Note: CH DEV ED EH LS PE TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w18859.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. O'Connell, Philip J. & Russell, Helen & FitzGerald, John, 2006. "Human Resources," Book Chapters, in: Morgenroth, Edgar (ed.),Ex-Ante Evaluation of the Investment Priorities for the National Development Plan 2007-2013, Economic and Social Research Institute (ESRI).
    2. John Fitzgerald & Peter Gottschalk & Robert Moffitt, 1998. "An Analysis of Sample Attrition in Panel Data: The Michigan Panel Study of Income Dynamics," Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 251-299.
    3. Shin, Donggyun & Solon, Gary, 2011. "Trends in men's earnings volatility: What does the Panel Study of Income Dynamics show?," Journal of Public Economics, Elsevier, vol. 95(7-8), pages 973-982, August.
    4. Card, David & Krueger, Alan B, 1992. "Does School Quality Matter? Returns to Education and the Characteristics of Public Schools in the United States," Journal of Political Economy, University of Chicago Press, vol. 100(1), pages 1-40, February.
    5. Elder Todd E & Goddeeris John H & Haider Steven J, 2011. "A Deadly Disparity: A Unified Assessment of the Black-White Infant Mortality Gap," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-44, June.
    6. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    7. Leora Friedberg, 1998. "Did Unilateral Divorce Raise Divorce Rates? Evidence from Panel Data," NBER Working Papers 6398, National Bureau of Economic Research, Inc.
    8. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    9. George J. Borjas, 2021. "The Labor Demand Curve Is Downward Sloping: Reexamining The Impact Of Immigration On The Labor Market," World Scientific Book Chapters, in: Foundational Essays in Immigration Economics, chapter 9, pages 235-274, World Scientific Publishing Co. Pte. Ltd..
    10. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    11. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    12. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    13. Steven D. Levitt, 1998. "Juvenile Crime and Punishment," Journal of Political Economy, University of Chicago Press, vol. 106(6), pages 1156-1185, December.
    14. Justin Wolfers, 2006. "Did Unilateral Divorce Laws Raise Divorce Rates? A Reconciliation and New Results," American Economic Review, American Economic Association, vol. 96(5), pages 1802-1820, December.
    15. David H. Autor & Lawrence F. Katz & Alan B. Krueger, 1998. "Computing Inequality: Have Computers Changed the Labor Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1169-1213.
    16. Jens Ludwig & Douglas L. Miller, 2007. "Does Head Start Improve Children's Life Chances? Evidence from a Regression Discontinuity Design," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(1), pages 159-208.
    17. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
    18. Wooldridge, Jeffrey M., 2001. "Asymptotic Properties Of Weighted M-Estimators For Standard Stratified Samples," Econometric Theory, Cambridge University Press, vol. 17(2), pages 451-470, April.
    19. Lee Jin Young & Solon Gary, 2011. "The Fragility of Estimated Effects of Unilateral Divorce Laws on Divorce Rates," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-11, August.
    20. Jeffrey M. Wooldridge, 1999. "Asymptotic Properties of Weighted M-Estimators for Variable Probability Samples," Econometrica, Econometric Society, vol. 67(6), pages 1385-1406, November.
    21. Dickins, William T, 1990. "Error Components in Grouped Data: Is It Ever Worth Weighting?," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 328-333, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    3. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    4. Prokhorov, Artem & Schmidt, Peter, 2009. "GMM redundancy results for general missing data problems," Journal of Econometrics, Elsevier, vol. 151(1), pages 47-55, July.
    5. Jushan Bai & Sung Hoon Choi & Yuan Liao, 2021. "Feasible generalized least squares for panel data with cross-sectional and serial correlations," Empirical Economics, Springer, vol. 60(1), pages 309-326, January.
    6. Entorf, Horst & Sattarova, Liliya, 2016. "The Analysis of Prison-Prisoner Data Using Cluster-Sample Econometrics: Prison Conditions and Prisoners' Assessments of the Future," IZA Discussion Papers 10209, Institute of Labor Economics (IZA).
    7. Christopher J. Cronin & David K. Guilkey & Ilene S. Speizer, 2019. "Measurement error in discrete health facility choice models: An example from urban Senegal," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1102-1120, November.
    8. Laszlo Goerke & Markus Pannenberg, 2005. "Severance Pay and the Shadow of the Law: Evidence for West Germany," CESifo Working Paper Series 1619, CESifo.
    9. Edith Aguirre, 2019. "Do changes in divorce legislation have an impact on divorce rates? The case of unilateral divorce in Mexico," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 28(1), pages 1-24, December.
    10. Daniela Vuri, 2018. "Joint custody law and mothers’ labor market outcomes: evidence from the USA," Journal of Population Economics, Springer;European Society for Population Economics, vol. 31(4), pages 1203-1237, October.
    11. Domenico Tabasso, 2011. "With or Without You: Hazard of Divorce and Intra-household Allocation of Time," Melbourne Institute Working Paper Series wp2011n07, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    12. Bai, Jushan & Choi, Sung Hoon & Liao, Yuan, 2024. "Standard errors for panel data models with unknown clusters," Journal of Econometrics, Elsevier, vol. 240(2).
    13. David Gunawan & William Griffths & Anatasios Panagiotelis and Duangkamon Chotikapanich, 2017. "Bayesian Weighted Inference from Surveys "Abstract: Data from large surveys are often supplemented with sampling weights that are designed to reflect unequal probabilities of response and selecti," Department of Economics - Working Papers Series 2030, The University of Melbourne.
    14. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    15. Terence C. Cheng & Pravin K. Trivedi, 2015. "Attrition Bias in Panel Data: A Sheep in Wolf's Clothing? A Case Study Based on the Mabel Survey," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1101-1117, September.
    16. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    17. Lihui Zhang, 2016. "Are youth offenders responsive to changing sanctions? Evidence from the Canadian Youth Criminal Justice Act of 2003," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 49(2), pages 515-554, May.
    18. Wolfgang Frimmel & Martin Halla & Rudolf Winter-Ebmer, 2016. "How Does Parental Divorce Affect Children's Long-term Outcomes?," Working Papers 2016-13, Faculty of Economics and Statistics, Universität Innsbruck.
    19. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    20. Stefan Hochguertel & Henry Ohlsson, 2009. "Compensatory inter vivos gifts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 993-1023.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:18859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.