IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v9y2015i3p315-339.html
   My bibliography  Save this article

Financial clustering in presence of dominant markets

Author

Listed:
  • Edoardo Otranto
  • Romana Gargano

Abstract

Clustering financial time series is a recent topic of statistical literature with important fields of applications, in particular portfolio composition and risk evaluation. The risk is generally linked to the volatility of the asset, but its level of predictability also plays a basic role in investment decisions. In particular, the classification of a certain asset could be linked to its dependence on the volatility of a dominant market: movements in the volatility of the dominant market can provide similar movements in the volatility of the asset and its predictability would depend on the strength of this dependence. Working in a model based framework, we base the classification of the volatility of an asset not only on its volatility level, but also on the presence of spillover effects from a dominant market, such as the US one, and on the similarity of the dynamics of the asset and the dominant market. The method is carried out using an extended version of the Multiplicative Error Model and is applied to a set of European assets, also performing a historical simulation experiment. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Edoardo Otranto & Romana Gargano, 2015. "Financial clustering in presence of dominant markets," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 315-339, September.
  • Handle: RePEc:spr:advdac:v:9:y:2015:i:3:p:315-339
    DOI: 10.1007/s11634-014-0189-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11634-014-0189-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11634-014-0189-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    2. Engle, Robert F & Ito, Takatoshi & Lin, Wen-Ling, 1990. "Meteor Showers or Heat Waves? Heteroskedastic Intra-daily Volatility in the Foreign Exchange Market," Econometrica, Econometric Society, vol. 58(3), pages 525-542, May.
    3. Nathaniel Frank & Heiko Hesse, 2009. "Financial Spillovers to Emerging Markets during the Global Financial Crisis," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(6), pages 507-521, December.
    4. Marco Corazza & Florence Legros & Cira Perna & Marilena Sibillo, 2017. "Mathematical and Statistical Methods for Actuarial Sciences and Finance," Post-Print hal-01776135, HAL.
    5. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    6. Gallo, Giampiero M. & Otranto, Edoardo, 2008. "Volatility spillovers, interdependence and comovements: A Markov Switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3011-3026, February.
    7. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    8. F. Lisi & E. Otranto, 2008. "Clustering Mutual Funds by Return and Risk Levels," Working Paper CRENoS 200813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    9. Michael D. Bordo, 2008. "An Historical Perspective on the Crisis of 2007-2008," NBER Working Papers 14569, National Bureau of Economic Research, Inc.
    10. Giampiero M. Gallo & Edoardo Otranto, 2007. "Volatility transmission across markets: a Multichain Markov Switching model," Applied Financial Economics, Taylor & Francis Journals, vol. 17(8), pages 659-670.
    11. Kristin J. Forbes & Menzie D. Chinn, 2004. "A Decomposition of Global Linkages in Financial Markets Over Time," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 705-722, August.
    12. Edwards, Sebastian & Susmel, Raul, 2001. "Volatility dependence and contagion in emerging equity markets," Journal of Development Economics, Elsevier, vol. 66(2), pages 505-532, December.
    13. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
    14. Domenico Piccolo, 1990. "A Distance Measure For Classifying Arima Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(2), pages 153-164, March.
    15. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    16. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    17. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    19. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    20. Pattarin, Francesco & Paterlini, Sandra & Minerva, Tommaso, 2004. "Clustering financial time series: an application to mutual funds style analysis," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 353-372, September.
    21. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    22. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    23. Sebastian Edwards & Raul Susmel, 2003. "Interest-Rate Volatility in Emerging Markets," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 328-348, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giampiero M. Gallo & Demetrio Lacava & Edoardo Otranto, 2020. "On Classifying the Effects of Policy Announcements on Volatility," Papers 2011.14094, arXiv.org, revised Feb 2021.
    2. Khalifa, Ahmed A.A. & Otranto, Edoardo & Hammoudeh, Shawkat & Ramchander, Sanjay, 2016. "Volatility transmission across currencies and commodities with US uncertainty measures," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 63-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    2. Demetrio Lacava & Luca Scaffidi Domianello, 2021. "The Incidence of Spillover Effects during the Unconventional Monetary Policies Era," JRFM, MDPI, vol. 14(6), pages 1-18, May.
    3. E. Otranto, 2012. "Spillover Effects in the Volatility of Financial Markets," Working Paper CRENoS 201217, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    4. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    5. Xu, Yongdeng & Taylor, Nick & Lu, Wenna, 2018. "Illiquidity and volatility spillover effects in equity markets during and after the global financial crisis: An MEM approach," International Review of Financial Analysis, Elsevier, vol. 56(C), pages 208-220.
    6. E. Otranto, 2024. "A Vector Multiplicative Error Model with Spillover Effects and Co-movements," Working Paper CRENoS 202404, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    7. Robert F. Engle & Giampiero M. Gallo & Margherita Velucchi, 2012. "Volatility Spillovers in East Asian Financial Markets: A Mem-Based Approach," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 222-223, February.
    8. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    9. Giampiero M. Gallo & Edoardo Otranto, 2014. "Forecasting Realized Volatility with Changes of Regimes," Econometrics Working Papers Archive 2014_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
    10. Giampiero M. Gallo & Margherita Velucchi, 2009. "Market interdependence and financial volatility transmission in East Asia," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 14(1), pages 24-44.
    11. Giampiero M. Gallo & Edoardo Otranto, 2012. "Realized Volatility and Change of Regimes," Econometrics Working Papers Archive 2012_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Jul 2012.
    12. Khalifa, Ahmed A.A. & Otranto, Edoardo & Hammoudeh, Shawkat & Ramchander, Sanjay, 2016. "Volatility transmission across currencies and commodities with US uncertainty measures," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 63-83.
    13. Gallo, Giampiero M. & Otranto, Edoardo, 2015. "Forecasting realized volatility with changing average levels," International Journal of Forecasting, Elsevier, vol. 31(3), pages 620-634.
    14. A. Khalifa & S. Hammoudeh & E. Otranto & S. Ramchander, 2012. "Volatility Transmission across Currency, Commodity and Equity Markets under Multi-Chain Regime Switching: Implications for Hedging and Portfolio Allocation," Working Paper CRENoS 201214, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    15. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    16. Luca Scaffidi Domianello & Giampiero M. Gallo & Edoardo Otranto, 2024. "Smooth and Abrupt Dynamics in Financial Volatility: The MS‐MEM‐MIDAS," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 21-43, February.
    17. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    18. Matteo Barigozzi & Christian T. Brownlees & Giampiero M. Gallo & David Veredas, 2010. "Disentangling Systematic and Idiosyncratic Risk for Large Panels of Assets," Econometrics Working Papers Archive wp2010_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    19. G.M. Gallo & D. Lacava & E. Otranto, 2023. "Volatility jumps and the classification of monetary policy announcements," Working Paper CRENoS 202306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    20. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.

    More about this item

    Keywords

    MEM; Unconditional volatility; Spillover effect ; Common dynamics; AR distance; 62H30; 91G70; 91G80;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:9:y:2015:i:3:p:315-339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.