IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/5500.html
   My bibliography  Save this paper

Implied Volatility Functions: Empirical Tests

Author

Listed:
  • Bernard Dumas
  • Jeff Fleming
  • Robert E. Whaley

Abstract

Black and Scholes (1973) implied volatilities tend to be systematically related to the option's exercise price and time to expiration. Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) attribute this behavior to the fact that the Black-Scholes constant volatility assumption is violated in practice. These authors hypothesize that the volatility of the underlying asset's return is a deterministic function of the asset price and time and develop the deterministic volatility function (DVF) option valuation model, which has the potential of fitting the observed cross-section of option prices exactly. Using a sample of S&P 500 index options during the period June 1988 through December 1993, we evaluate the economic significance of the implied deterministic volatility function by examining the predictive and hedging performance of the DV option valuation model. We find that its performance is worse than that of an ad hoc Black-Scholes model with variable implied volatilities.

Suggested Citation

  • Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1996. "Implied Volatility Functions: Empirical Tests," NBER Working Papers 5500, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:5500
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w5500.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Whaley, Robert E., 1982. "Valuation of American call options on dividend-paying stocks : Empirical tests," Journal of Financial Economics, Elsevier, vol. 10(1), pages 29-58, March.
    2. Harvey, Campbell R & Whaley, Robert E, 1991. "S&P 100 Index Option Volatility," Journal of Finance, American Finance Association, vol. 46(4), pages 1251-1261, September.
    3. MacBeth, James D & Merville, Larry J, 1980. "Tests of the Black-Scholes and Cox Call Option Valuation Models," Journal of Finance, American Finance Association, vol. 35(2), pages 285-301, May.
    4. Robert J. Shiller, 1992. "Market Volatility," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691515, April.
    5. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    6. Yaacov Z. Bergman & Bruce D. Grundy & Zvi Wiener, "undated". "Theory of Rational Option Pricing: II (Revised: 1-96)," Rodney L. White Center for Financial Research Working Papers 11-95, Wharton School Rodney L. White Center for Financial Research.
    7. Fleming, Jeff & Whaley, Robert E, 1994. "The Value of Wildcard Options," Journal of Finance, American Finance Association, vol. 49(1), pages 215-236, March.
    8. Lo, Andrew W., 1986. "Statistical tests of contingent-claims asset-pricing models : A new methodology," Journal of Financial Economics, Elsevier, vol. 17(1), pages 143-173, September.
    9. Yacine Aït-Sahalia & Andrew W. Lo, "undated". "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," CRSP working papers 332, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    10. repec:crs:wpaper:9329 is not listed on IDEAS
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    13. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Tompkins, 2001. "Implied volatility surfaces: uncovering regularities for options on financial futures," The European Journal of Finance, Taylor & Francis Journals, vol. 7(3), pages 198-230.
    2. Garcia, R. & Renault, E., 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Cahiers de recherche 9801, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    3. David S. Bates, 1997. "Post-'87 Crash Fears in S&P 500 Futures Options," NBER Working Papers 5894, National Bureau of Economic Research, Inc.
    4. Joshua V. Rosenberg & Robert F. Engle, 1997. "Option Hedging Using Empirical Pricing Kernels," NBER Working Papers 6222, National Bureau of Economic Research, Inc.
    5. Peter A. Abken & Saikat Nandi, 1996. "Options and volatility," Economic Review, Federal Reserve Bank of Atlanta, vol. 81(Dec), pages 21-35.
    6. Groh, Alexander P., 2004. "Risikoadjustierte Performance von Private Equity-Investitionen," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 21382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Steven Heston & Saikat Nandi, 1997. "A closed-form GARCH option pricing model," FRB Atlanta Working Paper 97-9, Federal Reserve Bank of Atlanta.
    8. Zsembery, Levente, 2003. "A volatilitás előrejelzése és a visszaszámított modellek [Forecasting of volatility and implied models]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(6), pages 519-542.
    9. Rama CONT, 1998. "Beyond implied volatility: extracting information from option prices," Finance 9804002, University Library of Munich, Germany.
    10. Garry Twite, 1996. "The Pricing of SPI Futures Options with Daily Futures Style Margin Payments," Australian Journal of Management, Australian School of Business, vol. 21(2), pages 139-157, December.
    11. Chang, Carolyn W. & S.K. Chang, Jack & Lim, Kian-Guan, 1998. "Information-time option pricing: theory and empirical evidence," Journal of Financial Economics, Elsevier, vol. 48(2), pages 211-242, May.
    12. Schmitt, Christian, 1996. "Option pricing using EGARCH models," ZEW Discussion Papers 96-20, ZEW - Leibniz Centre for European Economic Research.
    13. Carol Alexandra, 2002. "Common Correlation and Calibrating the Lognormal Forward Rate Model," ICMA Centre Discussion Papers in Finance icma-dp2002-18, Henley Business School, University of Reading, revised Jan 2003.
    14. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    15. Carol Alexander, 2002. "Short and Long Term Smile Effects: The Binomial Normal Mixture Diffusion Model," ICMA Centre Discussion Papers in Finance icma-dp2003-06, Henley Business School, University of Reading, revised Mar 2003.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    3. Bhupinder Bahra, 1997. "Implied risk-neutral probability density functions from option prices: theory and application," Bank of England working papers 66, Bank of England.
    4. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    6. Joe Akira Yoshino, 2003. "Market Risk and Volatility in the Brazilian Stock Market," Journal of Applied Economics, Universidad del CEMA, vol. 6, pages 385-403, November.
    7. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    8. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    9. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    10. GARCIA, René & RENAULT, Éric, 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Cahiers de recherche 9801, Universite de Montreal, Departement de sciences economiques.
    11. Eric Jacquier & Robert Jarrow, "undated". "Model Error in Contingent Claim Models (Dynamic Evaluation)," Rodney L. White Center for Financial Research Working Papers 07-96, Wharton School Rodney L. White Center for Financial Research.
    12. Hadjiyannakis, Steve & Culumovic, Louis & Welch, Robert L., 1998. "The relative mispricing of the constant variance American put model," International Review of Economics & Finance, Elsevier, vol. 7(2), pages 149-171.
    13. repec:hum:wpaper:sfb649dp2005-019 is not listed on IDEAS
    14. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.
    15. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    16. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    17. Andrea Capotorti & Gianna Figa'-Talamanca, 2012. "On an implicit assessment of fuzzy volatility in the Black and Scholes environment," Quaderni del Dipartimento di Economia, Finanza e Statistica 106/2012, Università di Perugia, Dipartimento Economia.
    18. Alonso, Francisco & Blanco, Roberto & Rubio Irigoyen, Gonzalo, 2005. "Testing the Forecasting Performance of Ibex 35 Option-implied Risk-neutral Densities," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    19. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    20. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    21. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:5500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.