IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_11466.html
   My bibliography  Save this paper

AI Users Are Not All Alike: The Characteristics of French Firms Buying and Developing AI

Author

Listed:
  • Flavio Calvino
  • Luca Fontanelli

Abstract

In this work we characterise French firms using artificial intelligence (AI) and explore the link between AI use and productivity. We distinguish AI users that source AI from external providers (AI buyers) from those developing their own AI systems (AI developers). AI buyers tend to be larger than other firms, but this relation is explained by ICT-related variables. Conversely, AI developers are larger and younger beyond ICT. Other digital technologies, digital skills and infrastructure play a key role for AI use, with AI developers leveraging more specialised ICT human capital than AI buyers. Overall, AI users tend to be more productive, however this is related to the self-selection of more productive and digital-intensive firms into AI use. This is not the case for AI developers, for which the positive link between AI use and productivity remains evident beyond selection.

Suggested Citation

  • Flavio Calvino & Luca Fontanelli, 2024. "AI Users Are Not All Alike: The Characteristics of French Firms Buying and Developing AI," CESifo Working Paper Series 11466, CESifo.
  • Handle: RePEc:ces:ceswps:_11466
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp11466.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erik Brynjolfsson & Daniel Rock & Chad Syverson, 2021. "The Productivity J-Curve: How Intangibles Complement General Purpose Technologies," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(1), pages 333-372, January.
    2. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.
    3. Domini, Giacomo & Grazzi, Marco & Moschella, Daniele & Treibich, Tania, 2022. "For whom the bell tolls: The firm-level effects of automation on wage and gender inequality," Research Policy, Elsevier, vol. 51(7).
    4. Charles Hoffreumon & Chris Forman & Nicolas van Zeebroeck, 2024. "Make or buy your artificial intelligence? Complementarities in technology sourcing," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 452-479, March.
    5. Bianchini, Stefano & Müller, Moritz & Pelletier, Pierre, 2022. "Artificial intelligence in science: An emerging general method of invention," Research Policy, Elsevier, vol. 51(10).
    6. Igna, Ioana & Venturini, Francesco, 2023. "The determinants of AI innovation across European firms," Research Policy, Elsevier, vol. 52(2).
    7. Erik Brynjolfsson & Wang Jin & Kristina McElheran, 2021. "The power of prediction: predictive analytics, workplace complements, and business performance," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 56(4), pages 217-239, October.
    8. Yang, Chih-Hai, 2022. "How Artificial Intelligence Technology Affects Productivity and Employment: Firm-level Evidence from Taiwan," Research Policy, Elsevier, vol. 51(6).
    9. Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2022. "Artificial Intelligence and Jobs: Evidence from Online Vacancies," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 293-340.
    10. Domini, Giacomo & Grazzi, Marco & Moschella, Daniele & Treibich, Tania, 2021. "Threats and opportunities in the digital era: Automation spikes and employment dynamics," Research Policy, Elsevier, vol. 50(7).
    11. Stefano Bianchini & Moritz Müller & Pierre Pelletier, 2022. "Artificial intelligence in science: An emerging general method of invention," Post-Print hal-03958025, HAL.
    12. Carol Corrado & Chiara Criscuolo & Jonathan Haskel & Alexander Himbert & Cecilia Jona-Lasinio, 2021. "New evidence on intangibles, diffusion and productivity," OECD Science, Technology and Industry Working Papers 2021/10, OECD Publishing.
    13. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia Foster & Nikolas Zolas, 2024. "AI adoption in America: Who, what, and where," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 375-415, March.
    14. Gilbert Cette & Sandra Nevoux & Loriane Py, 2022. "The impact of ICTs and digitalization on productivity and labor share: evidence from French firms," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 31(8), pages 669-692, November.
    15. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2023. "AI technologies and employment: micro evidence from the supply side," Applied Economics Letters, Taylor & Francis Journals, vol. 30(6), pages 816-821, March.
    16. Enrico Santarelli & Jacopo Staccioli & Marco Vivarelli, 2023. "Automation and related technologies: a mapping of the new knowledge base," The Journal of Technology Transfer, Springer, vol. 48(2), pages 779-813, April.
    17. Harrigan, James & Reshef, Ariell & Toubal, Farid, 2021. "The March of the Techies: Job Polarization Within and Between Firms," Research Policy, Elsevier, vol. 50(7).
    18. Francesca Borgonovi & Flavio Calvino & Chiara Criscuolo & Lea Samek & Helke Seitz & Julia Nania & Julia Nitschke & Layla O’Kane, 2023. "Emerging trends in AI skill demand across 14 OECD countries," OECD Artificial Intelligence Papers 2, OECD Publishing.
    19. Daron Acemoglu & Gary W. Anderson & David N. Beede & Catherine Buffington & Eric E. Childress & Emin Dinlersoz & Lucia S. Foster & Nathan Goldschlag & John C. Haltiwanger & Zachary Kroff & Pascual Res, 2024. "Automation and the Workforce: A Firm-Level View from the 2019 Annual Business Survey," NBER Chapters, in: Technology, Productivity, and Economic Growth, National Bureau of Economic Research, Inc.
    20. Bessen, James & Impink, Stephen Michael & Reichensperger, Lydia & Seamans, Robert, 2022. "The role of data for AI startup growth," Research Policy, Elsevier, vol. 51(5).
    21. repec:hal:spmain:info:hdl:2441/170cd4sul89ddpnfuomvfm0jc0 is not listed on IDEAS
    22. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    23. repec:hal:spmain:info:hdl:2441/3n1gbsj6rs80ipqv9d42nfd0ge is not listed on IDEAS
    24. Clougherty, Joseph A. & Duso, Tomaso & Muck, Johannes, 2016. "Correcting for Self-selection Based Endogeneity in Management Research: Review, Recommendations and Simulations," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19, pages 286-347.
    25. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    26. James J. Heckman, 1976. "Introduction to "Annals of Economic and Social Measurement, Volume 5, number 4"," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, National Bureau of Economic Research, Inc.
    27. Jose Manuel Campa & Simi Kedia, 2002. "Explaining the Diversification Discount," Journal of Finance, American Finance Association, vol. 57(4), pages 1731-1762, August.
    28. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    29. Cirillo, Valeria & Fanti, Lucrezia & Mina, Andrea & Ricci, Andrea, 2023. "The adoption of digital technologies: Investment, skills, work organisation," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 89-105.
    30. J. Myles Shaver, 1998. "Accounting for Endogeneity When Assessing Strategy Performance: Does Entry Mode Choice Affect FDI Survival?," Management Science, INFORMS, vol. 44(4), pages 571-585, April.
    31. Babina, Tania & Fedyk, Anastassia & He, Alex & Hodson, James, 2024. "Artificial intelligence, firm growth, and product innovation," Journal of Financial Economics, Elsevier, vol. 151(C).
    32. Wooldridge, Jeffrey M., 2009. "On estimating firm-level production functions using proxy variables to control for unobservables," Economics Letters, Elsevier, vol. 104(3), pages 112-114, September.
    33. Marioni, Larissa da Silva & Rincon-Aznar, Ana & Venturini, Francesco, 2024. "Productivity performance, distance to frontier and AI innovation: Firm-level evidence from Europe," Journal of Economic Behavior & Organization, Elsevier, vol. 228(C).
    34. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy, 2021. "The impact of artificial intelligence on labor productivity," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 11(1), pages 1-25, March.
    35. Erik Brynjolfsson & Lorin M. Hitt, 2003. "Computing Productivity: Firm-Level Evidence," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 793-808, November.
    36. DeStefano, Timothy & Kneller, Richard & Timmis, Jonathan, 2018. "Broadband infrastructure, ICT use and firm performance: Evidence for UK firms," Journal of Economic Behavior & Organization, Elsevier, vol. 155(C), pages 110-139.
    37. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    38. Jeffrey M. Wooldridge, 2015. "Control Function Methods in Applied Econometrics," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 420-445.
    39. Andrew A. King & Christopher L. Tucci, 2002. "Incumbent Entry into New Market Niches: The Role of Experience and Managerial Choice in the Creation of Dynamic Capabilities," Management Science, INFORMS, vol. 48(2), pages 171-186, February.
    40. Dahlke, Johannes & Beck, Mathias & Kinne, Jan & Lenz, David & Dehghan, Robert & Wörter, Martin & Ebersberger, Bernd, 2024. "Epidemic effects in the diffusion of emerging digital technologies: evidence from artificial intelligence adoption," Research Policy, Elsevier, vol. 53(2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Calvino & Luca Fontanelli, 2023. "Artificial intelligence, complementary assets and productivity: evidence from French firms," LEM Papers Series 2023/35, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Flavio Calvino & Chiara Criscuolo & Luca Fontanelli & Lionel Nesta & Elena Verdolini, 2024. "The role of human capital for AI adoption: Evidence from French firms," CEP Discussion Papers dp2055, Centre for Economic Performance, LSE.
    3. Bernardo Caldarola & Luca Fontanelli, 2024. "Cloud technologies, firm growth and industry concentration: Evidence from France," LEM Papers Series 2024/25, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Fossen, Frank M. & McLemore, Trevor & Sorgner, Alina, 2024. "Artificial Intelligence and Entrepreneurship," IZA Discussion Papers 17055, Institute of Labor Economics (IZA).
    5. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    6. Kristina McElheran & J. Frank Li & Erik Brynjolfsson & Zachary Kroff & Emin Dinlersoz & Lucia Foster & Nikolas Zolas, 2024. "AI adoption in America: Who, what, and where," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 375-415, March.
    7. Arntz, Melanie & Genz, Sabrina & Gregory, Terry & Lehmer, Florian & Zierahn-Weilage, Ulrich, 2024. "De-Routinization in the Fourth Industrial Revolution - Firm-Level Evidence," IZA Discussion Papers 16740, Institute of Labor Economics (IZA).
    8. Rathi, Sawan & Majumdar, Adrija & Chatterjee, Chirantan, 2024. "Did the COVID-19 pandemic propel usage of AI in pharmaceutical innovation? New evidence from patenting data," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    9. Lamperti, Fabio, 2024. "Unlocking machine learning for social sciences: The case for identifying Industry 4.0 adoption across business restructuring events," Technological Forecasting and Social Change, Elsevier, vol. 207(C).
    10. Erdem Dogukan Yilmaz & Christian Peukert, 2024. "Who Benefits from AI? Project-Level Evidence on Labor Demand, Operations and Profitability," CESifo Working Paper Series 11321, CESifo.
    11. Christian Peukert & Margaritha Windisch, 2023. "The Economics of Copyright in the Digital Age," CESifo Working Paper Series 10687, CESifo.
    12. Dolores Añon Higón & Juan A. Daniel Bonvin, 2023. "Do digitalization spurs SMEs’ participation in foreign markets?," Working Papers 2307, Department of Applied Economics II, Universidad de Valencia.
    13. Dolores Añón Higón & Daniel Bonvin, 2024. "Digitalization and trade participation of SMEs," Small Business Economics, Springer, vol. 62(3), pages 857-877, March.
    14. Ke-Liang Wang & Ting-Ting Sun & Ru-Yu Xu, 2023. "The impact of artificial intelligence on total factor productivity: empirical evidence from China’s manufacturing enterprises," Economic Change and Restructuring, Springer, vol. 56(2), pages 1113-1146, April.
    15. Banal-Estañol, Albert & Duso, Tomaso & Seldeslachts, Jo & Szücs, Florian, 2022. "R&D Spillovers through RJV Cooperation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 51(4), pages 1-10.
    16. Barth, Erling & Davis, James C. & Freeman, Richard B. & McElheran, Kristina, 2023. "Twisting the demand curve: Digitalization and the older workforce," Journal of Econometrics, Elsevier, vol. 233(2), pages 443-467.
    17. Erik Brynjolfsson & Catherine Buffington & Nathan Goldschlag & J. Frank Li & Javier Miranda & Robert Seamans, 2023. "The Characteristics and Geographic Distribution of Robot Hubs in U.S. Manufacturing Establishments," Working Papers 23-14, Center for Economic Studies, U.S. Census Bureau.
    18. Christoph Riedl & Eric Bogert, 2024. "Effects of AI Feedback on Learning, the Skill Gap, and Intellectual Diversity," Papers 2409.18660, arXiv.org.
    19. Bachmann, Ronald & Gonschor, Myrielle & Lewandowski, Piotr & Madoń, Karol, 2024. "The impact of Robots on Labour market transitions in Europe," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 422-441.
    20. Hajkowicz, Stefan & Sanderson, Conrad & Karimi, Sarvnaz & Bratanova, Alexandra & Naughtin, Claire, 2023. "Artificial intelligence adoption in the physical sciences, natural sciences, life sciences, social sciences and the arts and humanities: A bibliometric analysis of research publications from 1960-2021," Technology in Society, Elsevier, vol. 74(C).

    More about this item

    Keywords

    technology diffusion; artificial intelligence; digitalisation; productivity;
    All these keywords.

    JEL classification:

    • D20 - Microeconomics - - Production and Organizations - - - General
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_11466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.