IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt75z454gm.html
   My bibliography  Save this paper

Assessing the Benefits and Costs of Intelligent Tranportation Systems: Ramp Meters

Author

Listed:
  • Kang, Seungmin
  • Gillen, David

Abstract

This study undertakes an evaluation of the benefits and costs of ramp metering. The primary purpose was to provide empirical information on the value of the introduction and use of this form of ITS technology. Three cases are examined in the analysis. The impact of ramp metering on traffic behavior is simulated based on a cell transmission model and an assumed travel demand on the freeway as well as the ramp. Temporal travel demand change is determined based on the average travel pattern obtained from the I-880 freeway database. Isolated, single traffic responsive ramp metering is assumed. We identify and quantify the benefits and costs based on established assumptions, and finally analyzed economic value of ramp metering. Benefits of ramp metering are derived based on travel time value and fuel consumption and by savings in travel delay. In this study, it turns out that there is a net increase in vehicle emissions as a result of with ramp metering.

Suggested Citation

  • Kang, Seungmin & Gillen, David, 1999. "Assessing the Benefits and Costs of Intelligent Tranportation Systems: Ramp Meters," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt75z454gm, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt75z454gm
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/75z454gm.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Small, K.A. & Kazimi, C., 1994. "On the Costs of Air Pollution from Motor Vehicules," Papers 94-95-3, California Irvine - School of Social Sciences.
    2. Gillen, David & Li, Jianling & Dahlgren, Joy & Chang, Elva, 1999. "Assessing the Benefits and Costs of ITS Projects: Volume 2 An Application to Electronic Toll Collection," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1jv8j3zw, Institute of Transportation Studies, UC Berkeley.
    3. Skabardonis, Alexander & Noeimi, Hisham & Petty, Karl & Rydzewski, Dan & Varaiya, Pravin & Al-deek, Haitham, 1995. "Freeway Service Patrol Evaluation," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt36r1t2m2, Institute of Transportation Studies, UC Berkeley.
    4. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levinson, David & Chang, Elva, 2003. "A model for optimizing electronic toll collection systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(4), pages 293-314, May.
    2. So, Stella Kin-Mang, 2010. "Managing City Evacuations," University of California Transportation Center, Working Papers qt5257005q, University of California Transportation Center.
    3. Forkenbrock, David J., 1999. "External costs of intercity truck freight transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(7-8), pages 505-526.
    4. Jin, Wen-Long, 2018. "Kinematic wave models of sag and tunnel bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 41-56.
    5. Eymard, R. & Roussignol, M. & Tordeux, A., 2012. "Convergence of a misanthrope process to the entropy solution of 1D problems," Stochastic Processes and their Applications, Elsevier, vol. 122(11), pages 3648-3679.
    6. Soulaymane Kachani & Georgia Perakis, 2009. "A Dynamic Travel Time Model for Spillback," Networks and Spatial Economics, Springer, vol. 9(4), pages 595-618, December.
    7. Xu, Guanhao & Gayah, Vikash V., 2023. "Non-unimodal and non-concave relationships in the network Macroscopic Fundamental Diagram caused by hierarchical streets," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 203-227.
    8. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    9. Salim Mammar & Jean-Patrick Lebacque & Habib Haj Salem, 2009. "Riemann Problem Resolution and Godunov Scheme for the Aw-Rascle-Zhang Model," Transportation Science, INFORMS, vol. 43(4), pages 531-545, November.
    10. Duong Viet Thong & Aviv Gibali & Mathias Staudigl & Phan Tu Vuong, 2021. "Computing Dynamic User Equilibrium on Large-Scale Networks Without Knowing Global Parameters," Networks and Spatial Economics, Springer, vol. 21(3), pages 735-768, September.
    11. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    12. McCrea, Jennifer & Moutari, Salissou, 2010. "A hybrid macroscopic-based model for traffic flow in road networks," European Journal of Operational Research, Elsevier, vol. 207(2), pages 676-684, December.
    13. Jorge A. Laval & Ludovic Leclercq, 2010. "Continuum Approximation for Congestion Dynamics Along Freeway Corridors," Transportation Science, INFORMS, vol. 44(1), pages 87-97, February.
    14. Andronikos Paliathanasis & Peter G. L. Leach, 2022. "Lie Symmetry Analysis of the Aw–Rascle–Zhang Model for Traffic State Estimation," Mathematics, MDPI, vol. 11(1), pages 1-11, December.
    15. Coifman, Benjamin A. & Mallika, Ramachandran, 2007. "Distributed surveillance on freeways emphasizing incident detection and verification," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 750-767, October.
    16. So, Stella Kin-Mang, 2010. "Managing City Evacuations," University of California Transportation Center, Working Papers qt23w302h9, University of California Transportation Center.
    17. Parry, Ian W.H., 2001. "How Should Metropolitan Washington, DC, Finance Its Transportation Deficit?," Discussion Papers 10552, Resources for the Future.
    18. Gabriel Obed Fosu & Francis Tabi Oduro & Carlo Caligaris, 2021. "Multilane analysis of a viscous second-order macroscopic traffic flow model," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-17, February.
    19. Knoop, Victor L. & Snelder, Maaike & van Zuylen, Henk J. & Hoogendoorn, Serge P., 2012. "Link-level vulnerability indicators for real-world networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 843-854.
    20. Xingmin Wang & Zachary Jerome & Zihao Wang & Chenhao Zhang & Shengyin Shen & Vivek Vijaya Kumar & Fan Bai & Paul Krajewski & Danielle Deneau & Ahmad Jawad & Rachel Jones & Gary Piotrowicz & Henry X. L, 2024. "Traffic light optimization with low penetration rate vehicle trajectory data," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt75z454gm. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.