IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v188y2024ics1366554524002199.html
   My bibliography  Save this article

Maximin headway control of automated vehicles for system optimal dynamic traffic assignment in general networks

Author

Listed:
  • Du, Jinxiao
  • Ma, Wei

Abstract

This study develops the headway control framework in a fully automated road network, as we believe headway of Automated Vehicles (AVs) is another influencing factor to traffic dynamics in addition to conventional vehicle behaviors (e.g. route and departure time choices). Specifically, we aim to search for the optimal time headway between AVs on each link that achieves the network-wide system optimal dynamic traffic assignment (SO-DTA). To this end, the headway-dependent fundamental diagram (HFD) and headway-dependent double queue model (HDQ) are developed to model the effect of dynamic headway on roads, and a dynamic network model is built. It is rigorously proved that the minimum headway could always achieve SO-DTA, yet the optimal headway is non-unique. Motivated by these two findings, this study defines a novel concept of maximin headway, which is the largest headway that still achieves SO-DTA in the network. Mathematical properties regarding maximin headway are analyzed and an efficient solution algorithm is developed. Numerical experiments on both a small and large network verify the effectiveness of the maximin headway control framework as well as the properties of maximin headway. This study sheds light on deriving the desired solution among the non-unique solutions in SO-DTA and provides implications regarding the safety margin of AVs under SO-DTA.

Suggested Citation

  • Du, Jinxiao & Ma, Wei, 2024. "Maximin headway control of automated vehicles for system optimal dynamic traffic assignment in general networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:transe:v:188:y:2024:i:c:s1366554524002199
    DOI: 10.1016/j.tre.2024.103628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524002199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samitha Samaranayake & Walid Krichene & Jack Reilly & Maria Laura Delle Monache & Paola Goatin & Alexandre Bayen, 2018. "Discrete-Time System Optimal Dynamic Traffic Assignment (SO-DTA) with Partial Control for Physical Queuing Networks," Transportation Science, INFORMS, vol. 52(4), pages 982-1001, August.
    2. Lu, Chung-Cheng & Liu, Jiangtao & Qu, Yunchao & Peeta, Srinivas & Rouphail, Nagui M. & Zhou, Xuesong, 2016. "Eco-system optimal time-dependent flow assignment in a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 217-239.
    3. Shen, Wei & Zhang, H.M., 2014. "System optimal dynamic traffic assignment: Properties and solution procedures in the case of a many-to-one network," Transportation Research Part B: Methodological, Elsevier, vol. 65(C), pages 1-17.
    4. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    5. Jabari, Saif Eddin, 2016. "Node modeling for congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 229-249.
    6. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    7. Jin, Wen-Long, 2015. "Continuous formulations and analytical properties of the link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 88-103.
    8. Ngoduy, Dong & Hoang, N.H. & Vu, H.L. & Watling, D., 2021. "Multiclass dynamic system optimum solution for mixed traffic of human-driven and automated vehicles considering physical queues," Transportation Research Part B: Methodological, Elsevier, vol. 145(C), pages 56-79.
    9. Mariska van Essen & Tom Thomas & Eric van Berkum & Caspar Chorus, 2016. "From user equilibrium to system optimum: a literature review on the role of travel information, bounded rationality and non-selfish behaviour at the network and individual levels," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 527-548, July.
    10. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    11. Ma, Rui & Ban, Xuegang (Jeff) & Szeto, W.Y., 2017. "Emission modeling and pricing on single-destination dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 255-283.
    12. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    13. Zhang, Pinchao & Qian, Sean, 2020. "Path-based system optimal dynamic traffic assignment: A subgradient approach," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 41-63.
    14. Shi, Xiaowei & Li, Xiaopeng, 2021. "Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 279-292.
    15. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2005. "A within-day dynamic traffic assignment model for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 1-29, January.
    16. C. Gawron, 1998. "An Iterative Algorithm to Determine the Dynamic User Equilibrium in a Traffic Simulation Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 393-407.
    17. Gong, Siyuan & Shen, Jinglai & Du, Lili, 2016. "Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 314-334.
    18. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    19. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    20. Wang, Jian & Peeta, Srinivas & He, Xiaozheng, 2019. "Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 139-168.
    21. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    22. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    23. Li, Tongfei & Cao, Yaning & Xu, Min & Sun, Huijun, 2023. "Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    24. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    25. Hong K. Lo, 2001. "A Cell-Based Traffic Control Formulation: Strategies and Benefits of Dynamic Timing Plans," Transportation Science, INFORMS, vol. 35(2), pages 148-164, May.
    26. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    27. Chen, Zhibin & He, Fang & Yin, Yafeng & Du, Yuchuan, 2017. "Optimal design of autonomous vehicle zones in transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 44-61.
    28. Janson, Bruce N., 1991. "Dynamic traffic assignment for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 25(2-3), pages 143-161.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guanfeng & Jia, Hongfei & Feng, Tao & Tian, Jingjing & Wu, Ruiyi & Gao, Heyao & Liu, Chao, 2024. "Modelling the dual dynamic traffic flow evolution with information perception differences between human-driven vehicles and connected autonomous vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    2. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    3. Long, Jiancheng & Wang, Chao & Szeto, W.Y., 2018. "Dynamic system optimum simultaneous route and departure time choice problems: Intersection-movement-based formulations and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 166-206.
    4. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    5. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    6. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    7. Jiancheng Long & Wai Yuen Szeto, 2019. "Link-Based System Optimum Dynamic Traffic Assignment Problems in General Networks," Operations Research, INFORMS, vol. 67(1), pages 167-182, January.
    8. Jin, Wen-Long, 2015. "Point queue models: A unified approach," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 1-16.
    9. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    10. Ma, Rui & Ban, Xuegang (Jeff) & Szeto, W.Y., 2017. "Emission modeling and pricing on single-destination dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 255-283.
    11. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    13. Zhang, Pinchao & Qian, Sean, 2020. "Path-based system optimal dynamic traffic assignment: A subgradient approach," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 41-63.
    14. Jin, Wen-Long, 2017. "A Riemann solver for a system of hyperbolic conservation laws at a general road junction," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 21-41.
    15. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.
    16. Li, Xinghua & Zhang, Xinyuan & Qian, Xinwu & Zhao, Cong & Guo, Yuntao & Peeta, Srinivas, 2024. "Beyond centralization: Non-cooperative perimeter control with extended mean-field reinforcement learning in urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    17. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    18. Jin, Wen-Long, 2018. "Unifiable multi-commodity kinematic wave model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 639-659.
    19. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    20. Gao, Yang & Levinson, David, 2024. "A multi-stage spatial queueing model with logistic arrivals and departures consistent with the microscopic fundamental diagram and hysteresis," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:188:y:2024:i:c:s1366554524002199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.