IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt6sg5c0ng.html
   My bibliography  Save this paper

Experimental Evaluation of the Continuous Risk Profile (CRP) Approach to the Current Caltrans Methodology for High Collision Concentration Location Identification

Author

Listed:
  • Grembek, Offer
  • Kim, Kwangho
  • Kwon, Oh Hoon
  • Lee, Jinwoo
  • Liu, Haotian
  • Park, Min Ju
  • Washington, Simon
  • Ragland, David
  • Madanat, Samer M.

Abstract

This report evaluates the performance of Continuous Risk Profile (CRP) compared with the Sliding Window Method (SWM) and Peak Searching (PS) methods. These three network screening methods all require the same inputs: traffic collision data and Safety Performance Functions (SPFs), however, depending on how these input parameters are analyzed at the network screening level, the result of the analysis can vary significantly. Findings indicated that the CRP method produced far fewer false positives than SWM and PS. The false negative rates for CRP, SWM and PS were comparable. These findings indicate that by using the CRP method, California Department of Transportation (Caltrans) can significantly reduce the resources spent on investigating falsely identified locations and better utilize the resources in improving high collision concentration locations. It will also help Caltrans in reducing the backlog in Caltrans Table C.

Suggested Citation

  • Grembek, Offer & Kim, Kwangho & Kwon, Oh Hoon & Lee, Jinwoo & Liu, Haotian & Park, Min Ju & Washington, Simon & Ragland, David & Madanat, Samer M., 2012. "Experimental Evaluation of the Continuous Risk Profile (CRP) Approach to the Current Caltrans Methodology for High Collision Concentration Location Identification," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6sg5c0ng, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt6sg5c0ng
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6sg5c0ng.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chung, Koohong & Ragland, David R. & Madanat, Samer & Oh, Soon Mi, 2009. "The Continuous Risk Profile Approach for the Identification of High Collision Concentration Locations on Congested Highways," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt24m8j57d, Institute of Transportation Studies, UC Berkeley.
    2. Chung, Koohong & Rudjanakanoknad, Jittichai & Cassidy, Michael J., 2007. "Relation between traffic density and capacity drop at three freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 82-95, January.
    3. Chung, Koohong & Jang, Kitae & Madanat, Samer & Washington, Simon, 2011. "Proactive detection of high collision concentration locations on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 927-934, November.
    4. Koohong Chung & David R. Ragland, 2009. "The Continuous Risk Profile Approach for the Identification of High Collision Concentration Locations on Congested Highways," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 463-480, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eui-Jin Kim & Oh Hoon Kwon & Shin Hyoung Park & Dong-Kyu Kim & Koohong Chung, 2021. "Application of naïve Bayesian approach in detecting reproducible fatal collision locations on freeway," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    2. Chung, Koohong & Jang, Kitae & Madanat, Samer & Washington, Simon, 2011. "Proactive detection of high collision concentration locations on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 927-934, November.
    3. Medury, Aditya & Grembek, Offer, 2014. "Dynamic Programming-based Pedestrian Hotspot Identification Approach," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt10d0x1z7, Institute of Transportation Studies, UC Berkeley.
    4. Elyasi, Mohammad Reza & Saffarzade, Mahmoud & Boroujerdian, Amin Mirza, 2016. "A novel dynamic segmentation model for identification and prioritization of black spots based on the pattern of potential for safety improvement," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 346-357.
    5. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    6. Herrera, Juan C. & Bayen, Alexandre M., 2010. "Incorporation of Lagrangian measurements in freeway traffic state estimation," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 460-481, May.
    7. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    8. Richard Andrášik & Michal Bíl, 2016. "Efficient road geometry identification from digital vector data," Journal of Geographical Systems, Springer, vol. 18(3), pages 249-264, July.
    9. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    10. Kathrin Goldmann & Gernot Sieg, 2020. "Quantifying the phantom jam externality: The case of an Autobahn section in Germany," Working Papers 30, Institute of Transport Economics, University of Muenster.
    11. Martínez, Irene & Jin, Wen-Long, 2020. "Optimal location problem for variable speed limit application areas," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 221-246.
    12. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    13. Richard Arnott & Anatolii Kokoza & Mehdi Naji, 2015. "A Model of Rush-Hour Traffic in an Isotropic Downtown Area," Working Papers 201511, University of California at Riverside, Department of Economics.
    14. Jin, Wen-Long, 2017. "Kinematic wave models of lane-drop bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 507-522.
    15. Coifman, Benjamin & Kim, Seoungbum, 2011. "Extended bottlenecks, the fundamental relationship, and capacity drop on freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 980-991, November.
    16. Hall, Jonathan D., 2018. "Pareto improvements from Lexus Lanes: The effects of pricing a portion of the lanes on congested highways," Journal of Public Economics, Elsevier, vol. 158(C), pages 113-125.
    17. Xiong, Bang-Kai & Jiang, Rui & Tian, Jun-Fang, 2019. "Improving two-dimensional intelligent driver models to overcome overly high deceleration in car-following," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    18. Chen, Danjue & Ahn, Soyoung & Laval, Jorge & Zheng, Zuduo, 2014. "On the periodicity of traffic oscillations and capacity drop: The role of driver characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 117-136.
    19. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    20. Ancuta Fedorca & Mihai Fedorca & Ovidiu Ionescu & Ramon Jurj & Georgeta Ionescu & Marius Popa, 2021. "Sustainable Landscape Planning to Mitigate Wildlife–Vehicle Collisions," Land, MDPI, vol. 10(7), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt6sg5c0ng. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.