IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0251866.html
   My bibliography  Save this article

Application of naïve Bayesian approach in detecting reproducible fatal collision locations on freeway

Author

Listed:
  • Eui-Jin Kim
  • Oh Hoon Kwon
  • Shin Hyoung Park
  • Dong-Kyu Kim
  • Koohong Chung

Abstract

Detecting high-collision-concentration locations based solely on collision frequency may produce different results compared to those considering the severities of the collisions. In particular, it can lead government agencies focusing sites with a high collision frequency while neglecting those with a lower collision frequency but a higher percentage of injury and fatal collisions. This study developed systematic ways of detecting reproducible fatal collision locations (R) using the naïve Bayes approach and a continuous risk profile (CRP) that estimates the true collision risk by filtering out random noise in the data. The posterior probability of fatal collisions being reproducible at a location is estimated by the relationship between the spatial distribution of fatal-collision locations (i.e., likelihood) and the CRP (i.e., prior probability). The proposed method can be used to detect sites with the highest proxy measure of the posterior probability (PMP) of observing R. An empirical evaluation using 5-year traffic collision data from six routes in California shows that detecting R based on the PMP outperform those based on the SPF-based approaches or random selection, regardless of various conditions and parameters of the proposed method. This method only requires traffic collision and annual traffic volume data to estimate PMP that prioritize sites being R and the PMPs can be compared across multiple routes. Therefore, it helps government agencies prioritizing sites of multiple routes where the number of fatal collisions can be reduced, thus help them to save lives with limited resources of data collection.

Suggested Citation

  • Eui-Jin Kim & Oh Hoon Kwon & Shin Hyoung Park & Dong-Kyu Kim & Koohong Chung, 2021. "Application of naïve Bayesian approach in detecting reproducible fatal collision locations on freeway," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
  • Handle: RePEc:plo:pone00:0251866
    DOI: 10.1371/journal.pone.0251866
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251866
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0251866&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0251866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ragland, David R. & Chan, Ching-Yao, 2007. "High Collision Concentration Location: Table C Evaluation and Recommendations," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9q17p6r6, Institute of Transportation Studies, UC Berkeley.
    2. Oh, Jutaek & Washington, Simon & Lee, Dongmin, 2010. "Property Damage Crash Equivalency Factors for Solving the Crash Frequency-Severity Dilemma: Case Study on South Korean Rural Roads," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt02b2012z, Institute of Transportation Studies, UC Berkeley.
    3. Bigham, John & Oum, Sang Hyouk, 2018. "Evaluation of Injury Severity Updates in California Collision Data," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6n00x12d, Institute of Transportation Studies, UC Berkeley.
    4. Chung, Koohong & Ragland, David R. & Madanat, Samer & Oh, Soon Mi, 2009. "The Continuous Risk Profile Approach for the Identification of High Collision Concentration Locations on Congested Highways," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt24m8j57d, Institute of Transportation Studies, UC Berkeley.
    5. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    6. Jang, Kitae & Chung, Koohong & Ragland, David R & Chan, Ching-Yao, 2009. "Safety Performance of High-Occupancy Vehicle (HOV) Facilities: Evaluation of HOV Lane Configurations in California," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1cm7z3rd, Institute of Transportation Studies, UC Berkeley.
    7. Koohong Chung & David R. Ragland, 2009. "The Continuous Risk Profile Approach for the Identification of High Collision Concentration Locations on Congested Highways," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 463-480, Springer.
    8. Dongye Sun & Yunfei Ai & Yunhua Sun & Liping Zhao, 2020. "A highway crash risk assessment method based on traffic safety state division," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-14, January.
    9. Chung, Koohong & Jang, Kitae & Madanat, Samer & Washington, Simon, 2011. "Proactive detection of high collision concentration locations on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 927-934, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grembek, Offer & Kim, Kwangho & Kwon, Oh Hoon & Lee, Jinwoo & Liu, Haotian & Park, Min Ju & Washington, Simon & Ragland, David & Madanat, Samer M., 2012. "Experimental Evaluation of the Continuous Risk Profile (CRP) Approach to the Current Caltrans Methodology for High Collision Concentration Location Identification," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6sg5c0ng, Institute of Transportation Studies, UC Berkeley.
    2. Chung, Koohong & Jang, Kitae & Madanat, Samer & Washington, Simon, 2011. "Proactive detection of high collision concentration locations on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 927-934, November.
    3. Medury, Aditya & Grembek, Offer, 2014. "Dynamic Programming-based Pedestrian Hotspot Identification Approach," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt10d0x1z7, Institute of Transportation Studies, UC Berkeley.
    4. Elyasi, Mohammad Reza & Saffarzade, Mahmoud & Boroujerdian, Amin Mirza, 2016. "A novel dynamic segmentation model for identification and prioritization of black spots based on the pattern of potential for safety improvement," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 346-357.
    5. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    6. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    7. Khondoker Billah & Qasim Adegbite & Hatim O. Sharif & Samer Dessouky & Lauren Simcic, 2021. "Analysis of Intersection Traffic Safety in the City of San Antonio, 2013–2017," Sustainability, MDPI, vol. 13(9), pages 1-18, May.
    8. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    9. Bae, Bumjoon & Seo, Changbeom, 2022. "Do public-private partnerships help improve road safety? Finding empirical evidence using panel data models," Transport Policy, Elsevier, vol. 126(C), pages 336-342.
    10. Svetlana BAČKALIĆ & Dragan JOVANOVIĆ & Todor BAČKALIĆ & Boško MATOVIĆ & Miloš PLJAKIĆ, 2019. "The Application Of Reliability Reallocation Model In Traffic Safety Analysis On Rural Roads," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(1), pages 115-125, April.
    11. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    13. Richard Andrášik & Michal Bíl, 2016. "Efficient road geometry identification from digital vector data," Journal of Geographical Systems, Springer, vol. 18(3), pages 249-264, July.
    14. Renfei Wu & Xunjia Zheng & Yongneng Xu & Wei Wu & Guopeng Li & Qing Xu & Zhuming Nie, 2019. "Modified Driving Safety Field Based on Trajectory Prediction Model for Pedestrian–Vehicle Collision," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    15. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    16. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    17. Dereli, Mehmet Ali & Erdogan, Saffet, 2017. "A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 106-117.
    18. Maria Luisa Tumminello & Elżbieta Macioszek & Anna Granà, 2024. "Insights into Simulated Smart Mobility on Roundabouts: Achievements, Lessons Learned, and Steps Ahead," Sustainability, MDPI, vol. 16(10), pages 1-33, May.
    19. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    20. Wang, Hwachyi & De Backer, Hans & Lauwers, Dirk & Chang, S.K.Jason, 2019. "A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan)," Journal of Transport Geography, Elsevier, vol. 75(C), pages 94-109.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0251866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.