IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt0dd859tf.html
   My bibliography  Save this paper

Dual Influences on Vehicle Speeds in Special-Use Lanes and Policy Implications

Author

Listed:
  • Jang, Kitae
  • Cassidy, Michael J.

Abstract

Slow speeds in a special-use lane, such as a carpool (HOV) or bus lane, can be due to both high demand for that lane and slow speeds in the adjacent regular-use lane. These dual influences are confirmed from months of data collected from all freeway carpool facilities in the San Francisco Bay Area. Both influences hold for other types of special-use lanes, including bus lanes. New US regulation stipulating that most classes of low-emitting vehicles, or LEVs, be banned from slow-moving carpool lanes. While LEVs invariably constitute only about 1 percent of the freeway traffic demand in the San Francisco Bay Area, forcing some or all of these vehicles to regular-use lanes can significantly add to regular-lane congestion, and that this, in turn, can also be damaging to vehicles that continue to use the carpool lanes. Counterproductive outcomes of this kind are predicted first by applying kinematic wave analysis to a real Bay Area freeway. The site stands to suffer less from the regulation than will others in the region but the site’s people-hours and vehicle-hours traveled during the rush are predicted to each increase by more than 10 percent and that carpool-lane traffic will share in the damages. Real data from the site support these predictions. Further parametric analysis of a hypothetical, but more generic freeway system indicates that these kinds of negative outcomes will be widespread. Constructive ways to amend the new regulation are discussed, as are promising strategies to increase the vehicle speeds in carpool lanes by improving the travel conditions in regular lanes.

Suggested Citation

  • Jang, Kitae & Cassidy, Michael J., 2011. "Dual Influences on Vehicle Speeds in Special-Use Lanes and Policy Implications," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0dd859tf, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt0dd859tf
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/0dd859tf.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brownstone, David & Ghosh, Arindam & Kazimi, Camilla & Van Amelsfort, Dirk, 2002. "Drivers' Willingness-to-Pay to Reduce Travel Time: Evidence from the San Diego I-15 Congestion Pricing Project," University of California Transportation Center, Working Papers qt8q7331mz, University of California Transportation Center.
    2. Brownstone, David & Ghosh, Arindam & Golob, Thomas F & Kazimi, Camilla & Van Amelsfort, Dirk, 2002. "Drivers' Willingness-to-Pay to Reduce Travel Time: Evidence from the San Diego I-15 Congestion Pricing Project," University of California Transportation Center, Working Papers qt3mx1d1k4, University of California Transportation Center.
    3. Jang, Kitae & Chung, Koohong, 2010. "A Dynamic Congestion Pricing Strategy for High-Occupancy Toll Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4j56x02b, Institute of Transportation Studies, UC Berkeley.
    4. Carlos F. Daganzo & Reinaldo C. Garcia, 2000. "A Pareto Improving Strategy for the Time-Dependent Morning Commute Problem," Transportation Science, INFORMS, vol. 34(3), pages 303-311, August.
    5. Daganzo, Carlos F. & Cassidy, Michael J., 2008. "Effects of high occupancy vehicle lanes on freeway congestion," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 861-872, December.
    6. Fielding, Gordon J. & Klein, Daniel B., 1993. "High Occupancy / Toll Lanes: Phasing in Congestion Pricing a Lane at a Time," University of California Transportation Center, Working Papers qt2fv1c5p3, University of California Transportation Center.
    7. Brownstone, David & Ghosh, Arindam & Golob, Thomas F. & Kazimi, Camilla & Van Amelsfort, Dirk, 2003. "Drivers' willingness-to-pay to reduce travel time: evidence from the San Diego I-15 congestion pricing project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(4), pages 373-387, May.
    8. Harold Greenberg, 1959. "An Analysis of Traffic Flow," Operations Research, INFORMS, vol. 7(1), pages 79-85, February.
    9. Menendez, Monica & Daganzo, Carlos F., 2007. "Effects of HOV lanes on freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 809-822, October.
    10. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    11. Hensher, David A., 2008. "Influence of vehicle occupancy on the valuation of car driver's travel time savings: Identifying important behavioural segments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 67-76, January.
    12. Daganzo, Carlos F. & Laval, Jorge & Munoz, Juan Carlos, 2002. "Ten Strategies for Freeway Congestion Mitigation with Advanced Technologies," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4kd6v6qf, Institute of Transportation Studies, UC Berkeley.
    13. Haj-Salem, Habib & Papageorgiou, Marcos, 1995. "Ramp metering impact on urban corridor traffic: Field results," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(4), pages 303-319, July.
    14. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    15. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    16. Michael J. Cassidy & Carlos F. Daganzo & Kitae Jang & Koohong Chung, 2009. "Spatiotemporal Effects of Segregating Different Vehicle Classes on Separate Lanes," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 57-74, Springer.
    17. Dahlgren, Joy, 1998. "High occupancy vehicle lanes: Not always more effective than general purpose lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(2), pages 99-114, February.
    18. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    19. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Kitae & Cassidy, Michael J., 2012. "Dual influences on vehicle speed in special-use lanes and critique of US regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1108-1123.
    2. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    3. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    4. Guler, S. Ilgin & Cassidy, Michael J., 2012. "Strategies for sharing bottleneck capacity among buses and cars," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1334-1345.
    5. Shewmake, Sharon & Jarvis, Lovell, 2014. "Hybrid cars and HOV lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 304-319.
    6. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae, 2008. "Spatiotemporal Effects of Segregating Different Vehicle Classes on Separate Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6c69j2vv, Institute of Transportation Studies, UC Berkeley.
    7. Ozbay, Kaan & Yanmaz-Tuzel, Ozlem, 2008. "Valuation of travel time and departure time choice in the presence of time-of-day pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 577-590, May.
    8. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    9. Guler, Ilgin & Cassidy, Michael, 2010. "Deploying Underutilized Bus Lanes at Key Nodes in a Road Network," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3fh273s9, Institute of Transportation Studies, UC Berkeley.
    10. Holgun-Veras, Jos & Cetin, Mecit, 2009. "Optimal tolls for multi-class traffic: Analytical formulations and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 445-467, May.
    11. Steimetz, Seiji S.C. & Brownstone, David, 2005. "Estimating commuters' "value of time" with noisy data: a multiple imputation approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 865-889, December.
    12. Janson, Michael & Levinson, David, 2014. "HOT or not," Research in Transportation Economics, Elsevier, vol. 44(C), pages 21-32.
    13. He, Brian Yueshuai & Zhou, Jinkai & Ma, Ziyi & Wang, Ding & Sha, Di & Lee, Mina & Chow, Joseph Y.J. & Ozbay, Kaan, 2021. "A validated multi-agent simulation test bed to evaluate congestion pricing policies on population segments by time-of-day in New York City," Transport Policy, Elsevier, vol. 101(C), pages 145-161.
    14. MELIS, Lissa & SÖRENSEN, Kenneth, 2021. "The real-time on-demand bus routing problem: What is the cost of dynamic requests?," Working Papers 2021003, University of Antwerp, Faculty of Business and Economics.
    15. Markose, Sheri & Alentorn, Amadeo & Koesrindartoto, Deddy & Allen, Peter & Blythe, Phil & Grosso, Sergio, 2007. "A smart market for passenger road transport (SMPRT) congestion: An application of computational mechanism design," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 2001-2032, June.
    16. Holgui­n-Veras, Jose & Cetin, Mecit & Xia, Shuwen, 2006. "A comparative analysis of US toll policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(10), pages 852-871, December.
    17. Ji, Xiangfeng & Chu, Yanyu, 2020. "A target-oriented bi-attribute user equilibrium model with travelers’ perception errors on the tolled traffic network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    18. VanWechel, Tamara & Vachal, Kimberly, 2004. "Investment in Rural Roads: Willingness-to-Pay for Improved Gravel Road Service in Freight Transportation," MPC Reports 231701, North Dakota State University, Upper Great Plains Transportation Institute.
    19. Pascal Courty & Mario Pagliero, 2011. "Does responsive pricing smooth demand shocks?," Applied Economics, Taylor & Francis Journals, vol. 43(30), pages 4707-4721.
    20. Haghani, Milad & Bliemer, Michiel C.J. & Rose, John M. & Oppewal, Harmen & Lancsar, Emily, 2021. "Hypothetical bias in stated choice experiments: Part I. Macro-scale analysis of literature and integrative synthesis of empirical evidence from applied economics, experimental psychology and neuroimag," Journal of choice modelling, Elsevier, vol. 41(C).

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt0dd859tf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.