IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt3fh273s9.html
   My bibliography  Save this paper

Deploying Underutilized Bus Lanes at Key Nodes in a Road Network

Author

Listed:
  • Guler, Ilgin
  • Cassidy, Michael

Abstract

The authors of this working paper explain that the operation of buses in mixed traffic flow can be impeded by congestion, leading to unreliable and slow service. Similarly, buses that stop frequently for passengers interfere with the flow of general traffic. Dedicated lanes provide a means for buses to bypass car queues, but in cases where bus flow is low, converting a general purpose lane to a bus-only lane will delay car traffic. The authors describe innovative schemes for deploying bus lanes to serve low bus demand intermittently. Strategies to deploy underutilized bus lanes will be systematically examined and field-tested in Amman, Jordan. A final report will include guidelines for deploying underutilized bus lanes that reduce or eliminate bus delays while minimizing the additional delay imparted to cars.

Suggested Citation

  • Guler, Ilgin & Cassidy, Michael, 2010. "Deploying Underutilized Bus Lanes at Key Nodes in a Road Network," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3fh273s9, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt3fh273s9
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/3fh273s9.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Menendez, Monica & Daganzo, Carlos F., 2007. "Effects of HOV lanes on freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 809-822, October.
    2. Wu, Jianping & Hounsell, Nick, 1998. "Bus Priority Using pre-signals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(8), pages 563-583, November.
    3. Daganzo, Carlos F. & Laval, Jorge & Munoz, Juan Carlos, 2002. "Ten Strategies for Freeway Congestion Mitigation with Advanced Technologies," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4kd6v6qf, Institute of Transportation Studies, UC Berkeley.
    4. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    5. Michael J. Cassidy & Carlos F. Daganzo & Kitae Jang & Koohong Chung, 2009. "Spatiotemporal Effects of Segregating Different Vehicle Classes on Separate Lanes," Springer Books, in: William H. K. Lam & S. C. Wong & Hong K. Lo (ed.), Transportation and Traffic Theory 2009: Golden Jubilee, chapter 0, pages 57-74, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Kitae & Cassidy, Michael J., 2012. "Dual influences on vehicle speed in special-use lanes and critique of US regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1108-1123.
    2. Jang, Kitae & Cassidy, Michael J., 2011. "Dual Influences on Vehicle Speeds in Special-Use Lanes and Policy Implications," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0dd859tf, Institute of Transportation Studies, UC Berkeley.
    3. Lapardhaja, Servet & Jalota, Devansh & Doig, Jean & Almubarak, Abdullah & Cassidy, Michael, 2021. "Testing alternative treatments for underused carpool lanes on narrow freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 139-149.
    4. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    5. Cassidy, Michael J. & Kim, Kwangho & Ni, Wei & Gu, Weihua, 2015. "A problem of limited-access special lanes. Part I: Spatiotemporal studies of real freeway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 307-319.
    6. Cassidy, Michael J. & Kim, Kwangho & Ni, Wei & Gu, Weihua, 2015. "A problem of limited-access special lanes. Part II: Exploring remedies via simulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 320-329.
    7. Guler, S. Ilgin & Cassidy, Michael J., 2012. "Strategies for sharing bottleneck capacity among buses and cars," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1334-1345.
    8. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    9. Davis, L.C., 2012. "Mitigation of congestion at a traffic bottleneck with diversion and lane restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1679-1691.
    10. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    11. Nima Dadashzadeh & Murat Ergun, 2018. "Spatial bus priority schemes, implementation challenges and needs: an overview and directions for future studies," Public Transport, Springer, vol. 10(3), pages 545-570, December.
    12. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    13. Mogens Fosgerau & Kurt Van Dender, 2013. "Road pricing with complications," Transportation, Springer, vol. 40(3), pages 479-503, May.
    14. Shan, Xiaonian & Hao, Peng & Boriboonsomsin, Kanok & Wu, Guoyuan & Barth, Matthew & Chen, Xiaohong, 2018. "Partially limited access control design for special-use freeway lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 25-37.
    15. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan & Stephan, Konrad, 2021. "Optimizing carpool formation along high-occupancy vehicle lanes," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1097-1112.
    16. Anderson, Paul & Geroliminis, Nikolas, 2020. "Dynamic lane restrictions on congested arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 224-243.
    17. Menendez, Monica & Daganzo, Carlos F., 2007. "Effects of HOV lanes on freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 809-822, October.
    18. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    19. Nicolas Chiabaut & Anais Barcet, 2019. "Demonstration and evaluation of an intermittent bus lane strategy," Public Transport, Springer, vol. 11(3), pages 443-456, October.
    20. Mahdi SHEHAB & Dawood ALKANDARI, 2021. "Drivers' Tendencies To Engage In Aberrant Driving Behaviors That Violate Traffic Regulations In Kuwait," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(1), pages 19-28, March.

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt3fh273s9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.