IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v118y2018icp730-746.html
   My bibliography  Save this article

Functional, symbolic and societal frames for automobility: Implications for sustainability transitions

Author

Listed:
  • Sovacool, Benjamin K.
  • Axsen, Jonn

Abstract

Automobility refers to the continued, self-perpetuating dominance of privately-owned, gasoline-powered vehicles used primarily by single occupants—a system which clearly has broad environmental and societal impacts. Despite increasing societal interest in transitions to more sustainable transportation technologies, there has been little consideration of how such innovations might challenge, maintain or support different aspects of automobility, and what that means for technology deployment, transport policy, and user practices. To bring attention to the complexity and apparent durability of the automobility system, in this paper we develop a conceptual framework that explores automobility through a categorization of frames, or shared cultural meanings. This framework moves beyond the typical focus on private, functional considerations of user choice, financial costs and time use to also consider symbolic and societal frames of automobility that exist among users, non-users, industry, policymakers and other relevant social groups. We illustrate this framework with eight particular frames of automobility that fall into four broad categories: private-functional frames such as (1) cocooning and fortressing and (2) mobile digital offices; private-symbolic frames such as (3) gender identity and (4) social status; societal-functional frames such as (5) environmental stewardship and (6) suburbanization; and societal-symbolic frames such as (7) self-sufficiency and (8) innovativeness. Finally, we start the process of discussing several transportation innovations in light of these automobility frames, namely electrified, autonomous and shared mobility—examining early evidence for which frames would be challenged or supported by such transitions. We believe that appreciation of the complex and varied frames of automobility can enrich discussion of transitions and policy relating to sustainable transportation.

Suggested Citation

  • Sovacool, Benjamin K. & Axsen, Jonn, 2018. "Functional, symbolic and societal frames for automobility: Implications for sustainability transitions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 730-746.
  • Handle: RePEc:eee:transa:v:118:y:2018:i:c:p:730-746
    DOI: 10.1016/j.tra.2018.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856416311247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Rachel Aldred & Bridget Elliott & James Woodcock & Anna Goodman, 2017. "Cycling provision separated from motor traffic: a systematic review exploring whether stated preferences vary by gender and age," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 29-55, January.
    3. Mimi Sheller & John Urry, 2000. "The City and the Car," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 24(4), pages 737-757, December.
    4. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    5. Hohenberger, Christoph & Spörrle, Matthias & Welpe, Isabell M., 2016. "How and why do men and women differ in their willingness to use automated cars? The influence of emotions across different age groups," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 374-385.
    6. Andersen, Poul H. & Mathews, John A. & Rask, Morten, 2009. "Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2481-2486, July.
    7. Jonn Axsen & Kenneth S Kurani, 2012. "Interpersonal Influence within Car Buyers' Social Networks: Applying Five Perspectives to Plug-in Hybrid Vehicle Drivers," Environment and Planning A, , vol. 44(5), pages 1047-1065, May.
    8. Penna, Caetano C.R. & Geels, Frank W., 2015. "Climate change and the slow reorientation of the American car industry (1979–2012): An application and extension of the Dialectic Issue LifeCycle (DILC) model," Research Policy, Elsevier, vol. 44(5), pages 1029-1048.
    9. Budde Christensen, Thomas & Wells, Peter & Cipcigan, Liana, 2012. "Can innovative business models overcome resistance to electric vehicles? Better Place and battery electric cars in Denmark," Energy Policy, Elsevier, vol. 48(C), pages 498-505.
    10. Sovacool, Benjamin K. & Noel, Lance & Orsato, Renato J., 2017. "Stretching, embeddedness, and scripts in a sociotechnical transition: Explaining the failure of electric mobility at Better Place (2007–2013)," Technological Forecasting and Social Change, Elsevier, vol. 123(C), pages 24-34.
    11. Axsen, Jonn & TyreeHageman, Jennifer & Lentz, Andy, 2012. "Lifestyle practices and pro-environmental technology," Ecological Economics, Elsevier, vol. 82(C), pages 64-74.
    12. Matthews, Lindsay & Lynes, Jennifer & Riemer, Manuel & Del Matto, Tania & Cloet, Nicholas, 2017. "Do we have a car for you? Encouraging the uptake of electric vehicles at point of sale," Energy Policy, Elsevier, vol. 100(C), pages 79-88.
    13. Dijk, Marc & Wells, Peter & Kemp, René, 2016. "Will the momentum of the electric car last? Testing an hypothesis on disruptive innovation," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 77-88.
    14. Firnkorn, Jörg & Müller, Martin, 2011. "What will be the environmental effects of new free-floating car-sharing systems? The case of car2go in Ulm," Ecological Economics, Elsevier, vol. 70(8), pages 1519-1528, June.
    15. Belk, Russell & Painter, John & Semenik, Richard, 1981. "Preferred Solutions to the Energy Crisis as a Function of Causal Attributions," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 8(3), pages 306-312, December.
    16. Caperello, Nicolette & TyreeHageman, Jennifer & Kurani, Kenneth, 2014. "Engendering the Future of Electric Vehicles: Conversations with Men and Women," Institute of Transportation Studies, Working Paper Series qt4fv7x1qv, Institute of Transportation Studies, UC Davis.
    17. Mishra, Gouri Shankar & Clewlow, Regina R. & Mokhtarian, Patricia L. & Widaman, Keith F., 2015. "The effect of carsharing on vehicle holdings and travel behavior: A propensity score and causal mediation analysis of the San Francisco Bay Area," Research in Transportation Economics, Elsevier, vol. 52(C), pages 46-55.
    18. Gil Solá, Ana, 2016. "Constructing work travel inequalities: The role of household gender contracts," Journal of Transport Geography, Elsevier, vol. 53(C), pages 32-40.
    19. Andreas Goldthau & Benjamin K. Sovacool, 2016. "Energy Technology, Politics, and Interpretative Frames: Shale Gas Fracking in Eastern Europe," Global Environmental Politics, MIT Press, vol. 16(4), pages 50-69, November.
    20. Elizabeth Shove, 2010. "Beyond the ABC: Climate Change Policy and Theories of Social Change," Environment and Planning A, , vol. 42(6), pages 1273-1285, June.
    21. Bergman, Noam & Schwanen, Tim & Sovacool, Benjamin K., 2017. "Imagined people, behaviour and future mobility: Insights from visions of electric vehicles and car clubs in the United Kingdom," Transport Policy, Elsevier, vol. 59(C), pages 165-173.
    22. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    23. Green, Donald Philip, 1992. "The Price Elasticity of Mass Preferences," American Political Science Review, Cambridge University Press, vol. 86(1), pages 128-148, March.
    24. Rhodes, Ekaterina & Axsen, Jonn & Jaccard, Mark, 2015. "Gauging citizen support for a low carbon fuel standard," Energy Policy, Elsevier, vol. 79(C), pages 104-114.
    25. Zheng, Zuduo & Washington, Simon & Hyland, Paul & Sloan, Keith & Liu, Yulin, 2016. "Preference heterogeneity in mode choice based on a nationwide survey with a focus on urban rail," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 178-194.
    26. Axsen, Jonn & Bailey, Joseph & Castro, Marisol Andrea, 2015. "Preference and lifestyle heterogeneity among potential plug-in electric vehicle buyers," Energy Economics, Elsevier, vol. 50(C), pages 190-201.
    27. Janet Stephenson & Debbie Hopkins & Adam Doering, 2015. "Conceptualizing transport transitions: Energy Cultures as an organizing framework," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(4), pages 354-364, July.
    28. Brown, George & Sovacool, Benjamin K., 2017. "The presidential politics of climate discourse: Energy frames, policy, and political tactics from the 2016 Primaries in the United States," Energy Policy, Elsevier, vol. 111(C), pages 127-136.
    29. Turrentine, Thomas S. & Kurani, Kenneth S., 2007. "Car buyers and fuel economy?," Energy Policy, Elsevier, vol. 35(2), pages 1213-1223, February.
    30. Nielsen, Jesper Riber & Hovmøller, Harald & Blyth, Pascale-L. & Sovacool, Benjamin K., 2015. "Of “white crows” and “cash savers:” A qualitative study of travel behavior and perceptions of ridesharing in Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 113-123.
    31. Victor Valentine, Scott & Sovacool, Benjamin K. & Brown, Marilyn A., 2017. "Frame envy in energy policy ideology: A social constructivist framework for wicked energy problems," Energy Policy, Elsevier, vol. 109(C), pages 623-630.
    32. Geels, Frank W., 2014. "Reconceptualising the co-evolution of firms-in-industries and their environments: Developing an inter-disciplinary Triple Embeddedness Framework," Research Policy, Elsevier, vol. 43(2), pages 261-277.
    33. Aaron R. Brough & James E. B. Wilkie & Jingjing Ma & Mathew S. Isaac & David Gal, 2016. "Is Eco-Friendly Unmanly? The Green-Feminine Stereotype and Its Effect on Sustainable Consumption," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 43(4), pages 567-582.
    34. Edward Calthrop & Stef Proost, 1998. "Road Transport Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 335-348, April.
    35. Turrentine, Tom & Kurani, Kenneth S, 2007. "Car buyers and fuel economy?," Institute of Transportation Studies, Working Paper Series qt56x845v4, Institute of Transportation Studies, UC Davis.
    36. Plötz, Patrick & Schneider, Uta & Globisch, Joachim & Dütschke, Elisabeth, 2014. "Who will buy electric vehicles? Identifying early adopters in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 96-109.
    37. Troy R. Hawkins & Bhawna Singh & Guillaume Majeau‐Bettez & Anders Hammer Strømman, 2013. "Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 53-64, February.
    38. Noel Melton & Jonn Axsen & Daniel Sperling, 2016. "Moving beyond alternative fuel hype to decarbonize transportation," Nature Energy, Nature, vol. 1(3), pages 1-10, March.
    39. Vassileva, Iana & Campillo, Javier, 2017. "Adoption barriers for electric vehicles: Experiences from early adopters in Sweden," Energy, Elsevier, vol. 120(C), pages 632-641.
    40. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    41. Yingling Fan, 2017. "Household structure and gender differences in travel time: spouse/partner presence, parenthood, and breadwinner status," Transportation, Springer, vol. 44(2), pages 271-291, March.
    42. Mimi Sheller & John Urry, 2006. "The New Mobilities Paradigm," Environment and Planning A, , vol. 38(2), pages 207-226, February.
    43. Steg, Linda, 2005. "Car use: lust and must. Instrumental, symbolic and affective motives for car use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 147-162.
    44. Kent, Jennifer L., 2014. "Driving to save time or saving time to drive? The enduring appeal of the private car," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 103-115.
    45. Axsen, Jonn & Orlebar, Caroline & Skippon, Stephen, 2013. "Social influence and consumer preference formation for pro-environmental technology: The case of a U.K. workplace electric-vehicle study," Ecological Economics, Elsevier, vol. 95(C), pages 96-107.
    46. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lisa Scordato & Markus M Bugge & Teis Hansen & Anne Tanner & Olav Wicken, 2022. "Walking the talk? Innovation policy approaches to unleash the transformative potentials of the Nordic bioeconomy [Derfor har vi brug for en national bioøkonomistrategi. By the Danish Agriculture & ," Science and Public Policy, Oxford University Press, vol. 49(2), pages 324-346.
    2. Pettifor, Hazel & Wilson, Charlie, 2020. "Low carbon innovations for mobility, food, homes and energy: A synthesis of consumer attributes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    4. Gruber, Mario, 2020. "An evolutionary perspective on adoption-diffusion theory," Journal of Business Research, Elsevier, vol. 116(C), pages 535-541.
    5. Ingeborgrud, Lina & Ryghaug, Marianne, 2019. "The role of practical, cognitive and symbolic factors in the successful implementation of battery electric vehicles in Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 507-516.
    6. Liqiao Wang & Peter Wells, 2020. "Automobilities after SARS-CoV-2: A Socio-Technical Perspective," Sustainability, MDPI, vol. 12(15), pages 1-14, July.
    7. Sovacool, Benjamin K. & Griffiths, Steve, 2020. "The cultural barriers to a low-carbon future: A review of six mobility and energy transitions across 28 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Thomas Magnusson & Viktor Werner, 2023. "Conceptualisations of incumbent firms in sustainability transitions: Insights from organisation theory and a systematic literature review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(2), pages 903-919, February.
    9. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    10. Griffiths, S. & Furszyfer Del Rio, D. & Sovacool, B., 2021. "Policy mixes to achieve sustainable mobility after the COVID-19 crisis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Bašić Maja & Kovše Špela & Opačić Andraž & Pecarević Marijana & Obrecht Matevž, 2023. "Supply chain management mitigation to climate change in three selected industrial sectors," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 14(1), pages 1-13, December.
    12. Sovacool, Benjamin K. & Yazdi, Asieh Haieri, 2019. "Technological frames and the politics of automated electric Light Rail Rapid Transit in Poland and the United Kingdom," Technology in Society, Elsevier, vol. 59(C).
    13. Nikitas, Alexandros & Wang, Judith Y.T. & Knamiller, Cathy, 2019. "Exploring parental perceptions about school travel and walking school buses: A thematic analysis approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 468-487.
    14. Sweet, Matthias N. & Scott, Darren M., 2021. "Shared mobility adoption from 2016 to 2018 in the Greater Toronto and Hamilton Area: Demographic or geographic diffusion?," Journal of Transport Geography, Elsevier, vol. 96(C).
    15. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Income, political affiliation, urbanism and geography in stated preferences for electric vehicles (EVs) and vehicle-to-grid (V2G) technologies in Northern Europe," Journal of Transport Geography, Elsevier, vol. 78(C), pages 214-229.
    16. Weitao Zhang & Adaviah Mas’od & Zuraidah Sulaiman, 2022. "Moderating Effect of Collectivism on Chinese Consumers’ Intention to Adopt Electric Vehicles—An Adoption of VBN Framework," Sustainability, MDPI, vol. 14(19), pages 1-35, September.
    17. Fabienne T. Schiavo & Rodrigo F. Calili & Claudio F. de Magalhães & Isabel C. G. Fróes, 2021. "The Meaning of Electric Cars in the Context of Sustainable Transition in Brazil," Sustainability, MDPI, vol. 13(19), pages 1-24, October.
    18. Charles Lincoln Kenji Yamamura & Harmi Takiya & Cláudia Aparecida Soares Machado & José Carlos Curvelo Santana & José Alberto Quintanilha & Fernando Tobal Berssaneti, 2022. "Electric Cars in Brazil: An Analysis of Core Green Technologies and the Transition Process," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    19. Kirsi Kotilainen & Pami Aalto & Jussi Valta & Antti Rautiainen & Matti Kojo & Benjamin K. Sovacool, 2019. "From path dependence to policy mixes for Nordic electric mobility: Lessons for accelerating future transport transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(4), pages 573-600, December.
    20. Haarstad, Håvard & Sareen, Siddharth & Kandt, Jens & Coenen, Lars & Cook, Matthew, 2022. "Beyond automobility? Lock-in of past failures in low-carbon urban mobility innovations," Energy Policy, Elsevier, vol. 166(C).
    21. Hirschhorn, Fabio & Paulsson, Alexander & Sørensen, Claus H. & Veeneman, Wijnand, 2019. "Public transport regimes and mobility as a service: Governance approaches in Amsterdam, Birmingham, and Helsinki," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 178-191.
    22. Li, Shengxiao (Alex) & Guan, Xiaodong & Wang, Donggen, 2022. "How do constrained car ownership and car use influence travel and life satisfaction?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 202-218.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. White, Lee V. & Sintov, Nicole D., 2017. "You are what you drive: Environmentalist and social innovator symbolism drives electric vehicle adoption intentions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 94-113.
    2. Eunsung Kim & Eunnyeong Heo, 2019. "Key Drivers behind the Adoption of Electric Vehicle in Korea: An Analysis of the Revealed Preferences," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    3. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    4. Julian M. Müller, 2019. "Comparing Technology Acceptance for Autonomous Vehicles, Battery Electric Vehicles, and Car Sharing—A Study across Europe, China, and North America," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    5. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    6. Kumar Shalender & Naman Sharma, 2021. "Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 665-681, January.
    7. Sanguinetti, Angela & Favetti, Matthew & Hirschfelt, Kate & Kong, Nathaniel & Chakraborty, Debapriya & Alston-Stepnitz, Eli & Ma, Howard, 2023. "Developing a Vehicle Cost Calculator to Promote Electric Vehicle Adoption Among TNC Drivers," Institute of Transportation Studies, Working Paper Series qt1v44b5kp, Institute of Transportation Studies, UC Davis.
    8. Hasan, Saiful & Simsekoglu, Özlem, 2020. "The role of psychological factors on vehicle kilometer travelled (VKT) for battery electric vehicle (BEV) users," Research in Transportation Economics, Elsevier, vol. 82(C).
    9. Mohamed, Moataz & Higgins, Christopher D. & Ferguson, Mark & Réquia, Weeberb J., 2018. "The influence of vehicle body type in shaping behavioural intention to acquire electric vehicles: A multi-group structural equation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 54-72.
    10. Udit Chawla & Rajesh Mohnot & Varsha Mishra & Harsh Vikram Singh & Ayush Kumar Singh, 2023. "Factors Influencing Customer Preference and Adoption of Electric Vehicles in India: A Journey towards More Sustainable Transportation," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    11. Matthias N. Sweet & Kailey Laidlaw, 2020. "No longer in the driver’s seat: How do affective motivations impact consumer interest in automated vehicles?," Transportation, Springer, vol. 47(5), pages 2601-2634, October.
    12. Li, Wenbo & Long, Ruyin & Chen, Hong & Geng, Jichao, 2017. "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 318-328.
    13. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).
    14. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    15. Herberz, Mario & Hahnel, Ulf J.J. & Brosch, Tobias, 2020. "The importance of consumer motives for green mobility: A multi-modal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 102-118.
    16. Green, Erin H. & Skerlos, Steven J. & Winebrake, James J., 2014. "Increasing electric vehicle policy efficiency and effectiveness by reducing mainstream market bias," Energy Policy, Elsevier, vol. 65(C), pages 562-566.
    17. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    18. Ye Yang & Zhongfu Tan, 2019. "Investigating the Influence of Consumer Behavior and Governmental Policy on the Diffusion of Electric Vehicles in Beijing, China," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    19. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    20. Goldschmidt, Rüdiger & Richter, Andreas & Pfeil, Raphael, 2019. "Active stakeholder involvement and organisational tasks as factors for an effective communication and governance strategy in the promotion of e-taxis. Results from a field research lab," Energy Policy, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:118:y:2018:i:c:p:730-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.