IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v43y2009i7p729-748.html
   My bibliography  Save this article

Residential self-selection effects in an activity time-use behavior model

Author

Listed:
  • Pinjari, Abdul Rawoof
  • Bhat, Chandra R.
  • Hensher, David A.

Abstract

This study presents a joint model system of residential location and activity time-use choices that considers a comprehensive set of activity-travel environment (ATE) variables, as well as socio-demographic variables, as determinants of individual weekday activity time-use choices. The model system takes the form of a joint mixed Multinomial Logit-Multiple Discrete-Continuous Extreme Value (MNL-MDCEV) structure that (a) accommodates differential sensitivity to the ATE attributes due to both observed and unobserved individual-related attributes, and (b) controls for the self-selection of individuals into neighborhoods due to both observed and unobserved individual-related factors. The joint model system is estimated on a sample of 2793 households and individuals residing in Alameda County in the San Francisco Bay Area. The model results indicate the significant presence of residential self-selection effects due to both observed and unobserved individual-related factors. For instance, individuals from households with more bicycles are associated with a higher preference for out-of-home physically active pure recreational travel pursuits (such as bicycling around in the neighborhood). These same individuals locate into neighborhoods with good bicycling facilities. This leads to a non-causal association between individuals' time investment in out-of-home physically active pure recreational travel and bicycling facilities in their residential neighborhoods. Thus, ignoring the effect of bicycle ownership in the time-use model, would lead to an inflated estimate of the effect of bicycling facility density on the time invested in physically active pure recreational travel. Similarly, there are significant unobserved individual factors that lead to a high preference for physically active recreational activities and also make individuals locate in areas with good bicycling facilities. When such unobserved factors were controlled by the proposed joint residential location and time-use model, the impact of bicycling facility density on out-of-home physically active recreational activities ceased to be statistically significant (from being statistically significant in the independent time-use model). These results highlight the need to control for residential self-selection effects when estimating the effects of the activity-travel environment on activity time-use choices.

Suggested Citation

  • Pinjari, Abdul Rawoof & Bhat, Chandra R. & Hensher, David A., 2009. "Residential self-selection effects in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 729-748, August.
  • Handle: RePEc:eee:transb:v:43:y:2009:i:7:p:729-748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(09)00019-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Levinson & Bhanu Yerra, 2006. "Self-Organization of Surface Transportation Networks," Transportation Science, INFORMS, vol. 40(2), pages 179-188, May.
    2. Italo Meloni & Erika Spissu & Massimiliano Bez, 2007. "A Model of the Dynamic Process of Time Allocation to Discretionary Activities," Transportation Science, INFORMS, vol. 41(1), pages 15-28, February.
    3. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2007. "Modeling residential sorting effects to understand the impact of the built environment on commute mode choice," Transportation, Springer, vol. 34(5), pages 557-573, September.
    4. Rachel Copperman & Chandra Bhat, 2007. "An analysis of the determinants of children’s weekend physical activity participation," Transportation, Springer, vol. 34(1), pages 67-87, January.
    5. Eliasson, Jonas & Mattsson, Lars-Göran, 2000. "A model for integrated analysis of household location and travel choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(5), pages 375-394, June.
    6. Goulias, Konstadinos G. & Henson, Kriste M., 2006. "On Altruists and Egoists in Activity Participation and Travel: Who are they and do they live together?," University of California Transportation Center, Working Papers qt0p36z3r0, University of California Transportation Center.
    7. David Levinson, 1999. "Space, money, life-stage, and the allocation of time," Transportation, Springer, vol. 26(2), pages 141-171, May.
    8. Patricia L. Mokhtarian & Michael N. Bagley, 2002. "The impact of residential neighborhood type on travel behavior: A structural equations modeling approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 36(2), pages 279-297.
    9. Cervero, R. & Duncan, M., 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1478-1483.
    10. Terza, Joseph V. & Basu, Anirban & Rathouz, Paul J., 2008. "Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling," Journal of Health Economics, Elsevier, vol. 27(3), pages 531-543, May.
    11. I. Meloni & L. Guala & A. Loddo, 2004. "Time allocation to discretionary in-home, out-of-home activities and to trips," Transportation, Springer, vol. 31(1), pages 69-96, February.
    12. Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
    13. Alex Anas & Liang Shyong Duann, 1985. "Dynamic Forecasting Of Travel Demand, Residential Location And Land Development," Papers in Regional Science, Wiley Blackwell, vol. 56(1), pages 37-58, January.
    14. Marlon G. Boarnet & Sharon Sarmiento, 1998. "Can Land-use Policy Really Affect Travel Behaviour? A Study of the Link between Non-work Travel and Land-use Characteristics," Urban Studies, Urban Studies Journal Limited, vol. 35(7), pages 1155-1169, June.
    15. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Sen, Sudeshna, 2006. "A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 827-850, December.
    16. Chandra Bhat & Rajul Misra, 1999. "Discretionary activity time allocation of individuals between in-home and out-of-home and between weekdays and weekends," Transportation, Springer, vol. 26(2), pages 193-229, May.
    17. Bhat, Chandra R. & Gossen, Rachel, 2004. "A mixed multinomial logit model analysis of weekend recreational episode type choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 767-787, November.
    18. Cervero, Robert & Duncan, Michael, 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," University of California Transportation Center, Working Papers qt6zr1x95m, University of California Transportation Center.
    19. de Palma, Andre & Motamedi, Kiarash & Picard, Nathalie & Waddell, Paul, 2005. "A model of residential location choice with endogenous housing prices and traffic for the Paris region," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 31, pages 67-82.
    20. Xinyu Cao & Susan Handy & Patricia Mokhtarian, 2006. "The Influences of the Built Environment and Residential Self-Selection on Pedestrian Behavior: Evidence from Austin, TX," Transportation, Springer, vol. 33(1), pages 1-20, January.
    21. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    22. Cervero, Robert & Duncan, Michael, 2002. "Residential Self Selection and Rail Commuting: A Nested Logit Analysis," University of California Transportation Center, Working Papers qt1wg020cd, University of California Transportation Center.
    23. Susan Handy & Kelly Clifton, 2001. "Local shopping as a strategy for reducing automobile travel," Transportation, Springer, vol. 28(4), pages 317-346, November.
    24. Cynthia Chen & Patricia Mokhtarian, 2006. "Tradeoffs between Time Allocations to Maintenance Activities/Travel and Discretionary Activities/Travel," Transportation, Springer, vol. 33(3), pages 223-240, May.
    25. Khattak, Asad J. & Rodriguez, Daniel, 2005. "Travel behavior in neo-traditional neighborhood developments: A case study in USA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(6), pages 481-500, July.
    26. Schwanen, Tim & Mokhtarian, Patricia L., 2005. "What if You Live in the Wrong Neighborhood? The Impact of Residential Neighborhood Type Dissonance on Distance Traveled," University of California Transportation Center, Working Papers qt5hh713d6, University of California Transportation Center.
    27. Lu, Xuedong & Pas, Eric I., 1999. "Socio-demographics, activity participation and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(1), pages 1-18, January.
    28. Toshiyuki Yamamoto & Ryuichi Kitamura, 1999. "An analysis of time allocation to in-home and out-of-home discretionary activities across working days and non- working days," Transportation, Springer, vol. 26(2), pages 231-250, May.
    29. Chandra Bhat & Frank Koppelman, 1999. "A retrospective and prospective survey of time-use research," Transportation, Springer, vol. 26(2), pages 119-139, May.
    30. A S Fotheringham, 1983. "Some Theoretical Aspects of Destination Choice and Their Relevance to Production-Constrained Gravity Models," Environment and Planning A, , vol. 15(8), pages 1121-1132, August.
    31. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    32. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    33. Ipek Sener & Chandra Bhat, 2007. "An analysis of the social context of children’s weekend discretionary activity participation," Transportation, Springer, vol. 34(6), pages 697-721, November.
    34. Boarnet, Marlon G., 2003. "The Built Environment and Physical Activity: Empirical Methods and Data Resource," University of California Transportation Center, Working Papers qt7mj625f0, University of California Transportation Center.
    35. Daly, Andrew, 1982. "Estimating choice models containing attraction variables," Transportation Research Part B: Methodological, Elsevier, vol. 16(1), pages 5-15, February.
    36. Andrew Harvey & Maria Taylor, 2000. "Activity settings and travel behaviour: A social contact perspective," Transportation, Springer, vol. 27(1), pages 53-73, February.
    37. Danielle Snellen & Aloys Borgers & Harry Timmermans, 2002. "Urban Form, Road Network Type, and Mode Choice for Frequently Conducted Activities: A Multilevel Analysis Using Quasi-Experimental Design Data," Environment and Planning A, , vol. 34(7), pages 1207-1220, July.
    38. Handy, Susan & Cao, Xinyu & Mokhtarian, Patricia L., 2005. "Correlation or causality between the built environment and travel behavior? Evidence from Northern California," University of California Transportation Center, Working Papers qt5b76c5kg, University of California Transportation Center.
    39. Schwanen, Tim & Mokhtarian, Patricia L., 2005. "What Affects Commute Mode Choice: Neighborhood Physical Structure or Preferences Toward Neighborhoods?," University of California Transportation Center, Working Papers qt4nq9r1c9, University of California Transportation Center.
    40. Konstadinos Goulias & Kriste Henson, 2006. "On altruists and egoists in activity participation and travel: who are they and do they live together?," Transportation, Springer, vol. 33(5), pages 447-462, September.
    41. Konstadinos Goulias, 2002. "Multilevel analysis of daily time use and time allocation to activity types accounting for complex covariance structures using correlated random effects," Transportation, Springer, vol. 29(1), pages 31-48, February.
    42. Salon, Deborah, 2006. "Cars and the City: An Investigation of Transportation and Residential Location Choices in New York City," University of California Transportation Center, Working Papers qt1br223vz, University of California Transportation Center.
    43. John Gliebe & Frank Koppelman, 2002. "A model of joint activity participation between household members," Transportation, Springer, vol. 29(1), pages 49-72, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ipek Sener & Chandra Bhat, 2012. "Modeling the spatial and temporal dimensions of recreational activity participation with a focus on physical activities," Transportation, Springer, vol. 39(3), pages 627-656, May.
    2. Wang, Donggen & Chai, Yanwei & Li, Fei, 2011. "Built environment diversities and activity–travel behaviour variations in Beijing, China," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1173-1186.
    3. Cao, Xinyu & Mokhtarian, Patricia & Handy, Susan, 2008. "Examining The Impacts of Residential Self-Selection on Travel Behavior: Methodologies and Empirical Findings," Institute of Transportation Studies, Working Paper Series qt08x1k476, Institute of Transportation Studies, UC Davis.
    4. Bhat, Chandra R. & Guo, Jessica Y., 2007. "A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 506-526, June.
    5. Cao, Xinyu (Jason) & Mokhtarian, Patricia L. & Handy, Susan L., 2009. "The relationship between the built environment and nonwork travel: A case study of Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 548-559, June.
    6. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    7. Van Acker, Veronique & Witlox, Frank, 2010. "Car ownership as a mediating variable in car travel behaviour research using a structural equation modelling approach to identify its dual relationship," Journal of Transport Geography, Elsevier, vol. 18(1), pages 65-74.
    8. Chandra Bhat & Konstadinos Goulias & Ram Pendyala & Rajesh Paleti & Raghuprasad Sidharthan & Laura Schmitt & Hsi-Hwa Hu, 2013. "A household-level activity pattern generation model with an application for Southern California," Transportation, Springer, vol. 40(5), pages 1063-1086, September.
    9. Mokhtarian, Patricia L. & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 204-228, March.
    10. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    11. Liang Long & Jie Lin & Kimon Proussaloglou, 2010. "Investigating Contextual Variability in Mode Choice in Chicago Using a Hierarchical Mixed Logit Model," Urban Studies, Urban Studies Journal Limited, vol. 47(11), pages 2445-2459, October.
    12. Lee, Yuhwa & Washington, Simon & Frank, Lawrence D., 2009. "Examination of relationships between urban form, household activities, and time allocation in the Atlanta Metropolitan Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 360-373, May.
    13. Marcela Munizaga & Sergio Jara-Díaz & Paulina Greeven & Chandra Bhat, 2008. "Econometric Calibration of the Joint Time Assignment--Mode Choice Model," Transportation Science, INFORMS, vol. 42(2), pages 208-219, May.
    14. Lin, Tao & Wang, Donggen, 2015. "Tradeoffs between in- and out-of-residential neighborhood locations for discretionary activities and time use: do social contexts matter?," Journal of Transport Geography, Elsevier, vol. 47(C), pages 119-127.
    15. Pinjari, Abdul Rawoof & Bhat, Chandra, 2010. "A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity time-use and timing behavior on weekdays," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 562-583, May.
    16. Emine Coruh & Faruk Urak & Abdulbaki Bilgic & Steven T. Yen, 2022. "The role of household demographic factors in shaping transportation spending in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3485-3517, March.
    17. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    18. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    19. Cao, Xinyu, 2006. "The Causal Relationship between the Built Environment and Personal Travel Choice: Evidence from Northern California," University of California Transportation Center, Working Papers qt07q5p340, University of California Transportation Center.
    20. Wang, Donggen & Lin, Tao, 2013. "Built environments, social environments, and activity-travel behavior: a case study of Hong Kong," Journal of Transport Geography, Elsevier, vol. 31(C), pages 286-295.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:43:y:2009:i:7:p:729-748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.