IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5777-d812631.html
   My bibliography  Save this article

Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives

Author

Listed:
  • Jingnan Zhang

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Shichun Xu

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

  • Zhengxia He

    (School of Economics, Hangzhou Normal University, Hangzhou 311121, China)

  • Chengze Li

    (China Bureau of Scientific Research Management of Chinese Academy of Social Sciences, Beijing 100732, China)

  • Xiaona Meng

    (School of Economics and Management, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

The popularization of electric vehicles (EVs) is beneficial to the sustainable development of energy and the environment. China’s promotion and development strategy for EVs will serve as a model for other countries. EV ownership has a significant difference between first/second-tier (FST) cities and third/fourth-tier (TFT) cities and there is a huge growth potential for the EV market in those TFT cities. This paper aims to explore the factors influencing the adoption intentions for EVs in FST and TFT cities under a subsidy deduction and to make a comparative analysis of their regional heterogeneity. Based on the extended theory of planned behavior (TPB) model, the structural equation model is used to compare the factors affecting the adoption intention for EVs of 858 respondents in China. The results show that attitude, subjective norms, novelty seeking, non-financial incentive, product cognition, and environmental concerns are positively related to intention in FST and TFT cities; however, infrastructure development only has a positive significant impact in the TFT cities. Additionally, the subsidy deduction has a more negative impact on the adoption intentions in FST cities. Our findings provide vital insights for formulating government regulations and marketing strategies depending on the diverse sizes and attributes of Chinese cities.

Suggested Citation

  • Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5777-:d:812631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    2. Zhang, Xian & Wang, Ke & Hao, Yu & Fan, Jing-Li & Wei, Yi-Ming, 2013. "The impact of government policy on preference for NEVs: The evidence from China," Energy Policy, Elsevier, vol. 61(C), pages 382-393.
    3. Yang, Shu & Cheng, Peng & Li, Jun & Wang, Shanyong, 2019. "Which group should policies target? Effects of incentive policies and product cognitions for electric vehicle adoption among Chinese consumers," Energy Policy, Elsevier, vol. 135(C).
    4. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    5. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    6. Amy Fry & Tim Ryley & Robert Thring, 2018. "The Influence of Knowledge and Persuasion on the Decision to Adopt or Reject Alternative Fuel Vehicles," Sustainability, MDPI, vol. 10(9), pages 1-20, August.
    7. Riesz, Jenny & Sotiriadis, Claire & Ambach, Daisy & Donovan, Stuart, 2016. "Quantifying the costs of a rapid transition to electric vehicles," Applied Energy, Elsevier, vol. 180(C), pages 287-300.
    8. Wang, Ning & Tang, Linhao & Zhang, Wenjian & Guo, Jiahui, 2019. "How to face the challenges caused by the abolishment of subsidies for electric vehicles in China?," Energy, Elsevier, vol. 166(C), pages 359-372.
    9. Fanchao Liao & Eric Molin & Bert van Wee, 2017. "Consumer preferences for electric vehicles: a literature review," Transport Reviews, Taylor & Francis Journals, vol. 37(3), pages 252-275, May.
    10. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    11. Lee Cronbach, 1951. "Coefficient alpha and the internal structure of tests," Psychometrika, Springer;The Psychometric Society, vol. 16(3), pages 297-334, September.
    12. Asghar Afshar Jahanshahi & Jianfeng Jia, 2018. "Purchasing Green Products as a Means of Expressing Consumers’ Uniqueness: Empirical Evidence from Peru and Bangladesh," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    13. Wang, Ning & Tang, Linhao & Pan, Huizhong, 2018. "Analysis of public acceptance of electric vehicles: An empirical study in Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 284-291.
    14. Gallagher, Kelly Sims & Muehlegger, Erich, 2011. "Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 1-15, January.
    15. Liu, Junbei & Zhuge, Chengxiang & Tang, Justin Hayse Chiwing G. & Meng, Meng & Zhang, Jie, 2022. "A spatial agent-based joint model of electric vehicle and vehicle-to-grid adoption: A case of Beijing," Applied Energy, Elsevier, vol. 310(C).
    16. Krause, Rachel M. & Carley, Sanya R. & Lane, Bradley W. & Graham, John D., 2013. "Perception and reality: Public knowledge of plug-in electric vehicles in 21 U.S. cities," Energy Policy, Elsevier, vol. 63(C), pages 433-440.
    17. Yuan, Xueliang & Liu, Xin & Zuo, Jian, 2015. "The development of new energy vehicles for a sustainable future: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 298-305.
    18. Sea-Jin Chang & Arjen van Witteloostuijn & Lorraine Eden, 2010. "From the Editors: Common method variance in international business research," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 41(2), pages 178-184, February.
    19. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    20. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    21. Barbarossa, Camilla & De Pelsmacker, Patrick & Moons, Ingrid, 2017. "Personal Values, Green Self-identity and Electric Car Adoption," Ecological Economics, Elsevier, vol. 140(C), pages 190-200.
    22. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    23. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    24. Dagsvik, John K. & Wennemo, Tom & Wetterwald, Dag G. & Aaberge, Rolf, 2002. "Potential demand for alternative fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 361-384, May.
    25. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    26. Chen, Shang-Yu, 2016. "Using the sustainable modified TAM and TPB to analyze the effects of perceived green value on loyalty to a public bike system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 58-72.
    27. Lieven, Theo, 2015. "Policy measures to promote electric mobility – A global perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 78-93.
    28. Wang, Ning & Pan, Huizhong & Zheng, Wenhui, 2017. "Assessment of the incentives on electric vehicle promotion in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 177-189.
    29. Johan Jansson, 2011. "Consumer eco‐innovation adoption: assessing attitudinal factors and perceived product characteristics," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 192-210, March.
    30. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    31. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    32. Coad, Alex & de Haan, Peter & Woersdorfer, Julia Sophie, 2009. "Consumer support for environmental policies: An application to purchases of green cars," Ecological Economics, Elsevier, vol. 68(7), pages 2078-2086, May.
    33. Wu, Yunna & Song, Zixin & Li, Lingwenying & Xu, Ruhang, 2018. "Risk management of public-private partnership charging infrastructure projects in China based on a three-dimension framework," Energy, Elsevier, vol. 165(PA), pages 1089-1101.
    34. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    35. Arts, Joep W.C. & Frambach, Ruud T. & Bijmolt, Tammo H.A., 2011. "Generalizations on consumer innovation adoption: A meta-analysis on drivers of intention and behavior," International Journal of Research in Marketing, Elsevier, vol. 28(2), pages 134-144.
    36. Kamonthip Maichum & Surakiat Parichatnon & Ke-Chung Peng, 2016. "Application of the Extended Theory of Planned Behavior Model to Investigate Purchase Intention of Green Products among Thai Consumers," Sustainability, MDPI, vol. 8(10), pages 1-20, October.
    37. Hao, Han & Ou, Xunmin & Du, Jiuyu & Wang, Hewu & Ouyang, Minggao, 2014. "China’s electric vehicle subsidy scheme: Rationale and impacts," Energy Policy, Elsevier, vol. 73(C), pages 722-732.
    38. Liu, Zongwei & Hao, Han & Cheng, Xiang & Zhao, Fuquan, 2018. "Critical issues of energy efficient and new energy vehicles development in China," Energy Policy, Elsevier, vol. 115(C), pages 92-97.
    39. Clinton, Bentley C. & Steinberg, Daniel C., 2019. "Providing the Spark: Impact of financial incentives on battery electric vehicle adoption," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    40. She, Zhen-Yu & Qing Sun, & Ma, Jia-Jun & Xie, Bai-Chen, 2017. "What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China," Transport Policy, Elsevier, vol. 56(C), pages 29-40.
    41. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    42. Naresh K. Malhotra & Sung S. Kim & Ashutosh Patil, 2006. "Common Method Variance in IS Research: A Comparison of Alternative Approaches and a Reanalysis of Past Research," Management Science, INFORMS, vol. 52(12), pages 1865-1883, December.
    43. White, Lee V. & Sintov, Nicole D., 2017. "You are what you drive: Environmentalist and social innovator symbolism drives electric vehicle adoption intentions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 94-113.
    44. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hailin Xiao & Xiaocai Zhang, 2022. "The Market Disruption Path of Green-Oriented Trajectory-Transformed Technology Innovation: A Study of Consumer Lifestyles during the “Chasm” in China’s Electric Vehicle Market," Sustainability, MDPI, vol. 14(14), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaiswal, Deepak & Kaushal, Vikrant & Kant, Rishi & Kumar Singh, Pankaj, 2021. "Consumer adoption intention for electric vehicles: Insights and evidence from Indian sustainable transportation," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Wang, Shanyong & Li, Jun & Zhao, Dingtao, 2017. "The impact of policy measures on consumer intention to adopt electric vehicles: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 14-26.
    3. Qiu, Y.Q. & Zhou, P. & Sun, H.C., 2019. "Assessing the effectiveness of city-level electric vehicle policies in China," Energy Policy, Elsevier, vol. 130(C), pages 22-31.
    4. Higueras-Castillo, Elena & Kalinic, Zoran & Marinkovic, Veljko & Liébana-Cabanillas, Francisco J., 2020. "A mixed analysis of perceptions of electric and hybrid vehicles," Energy Policy, Elsevier, vol. 136(C).
    5. Wang, Xiao-Wu & Cao, Yu-Mei & Zhang, Ning, 2021. "The influences of incentive policy perceptions and consumer social attributes on battery electric vehicle purchase intentions," Energy Policy, Elsevier, vol. 151(C).
    6. Kim, Moon-Koo & Oh, Jeesun & Park, Jong-Hyun & Joo, Changlim, 2018. "Perceived value and adoption intention for electric vehicles in Korea: Moderating effects of environmental traits and government supports," Energy, Elsevier, vol. 159(C), pages 799-809.
    7. Ziwen Ling & Christopher R. Cherry & Yi Wen, 2021. "Determining the Factors That Influence Electric Vehicle Adoption: A Stated Preference Survey Study in Beijing, China," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    8. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    9. Kumar Shalender & Naman Sharma, 2021. "Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 665-681, January.
    10. Mohamed, Moataz & Higgins, Christopher D. & Ferguson, Mark & Réquia, Weeberb J., 2018. "The influence of vehicle body type in shaping behavioural intention to acquire electric vehicles: A multi-group structural equation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 54-72.
    11. Fu, Xuemei, 2024. "Understanding the adoption intention for electric vehicles: The role of hedonic-utilitarian values," Energy, Elsevier, vol. 301(C).
    12. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    13. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    14. Han, Liu & Wang, Shanyong & Zhao, Dingtao & Li, Jun, 2017. "The intention to adopt electric vehicles: Driven by functional and non-functional values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 185-197.
    15. Higueras-Castillo, Elena & Liébana-Cabanillas, Francisco José & Muñoz-Leiva, Francisco & García-Maroto, Inmaculada, 2019. "Evaluating consumer attitudes toward electromobility and the moderating effect of perceived consumer effectiveness," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 387-398.
    16. Tianpei Tang & Xiwei Wang & Jianbing Wu & Meining Yuan & Yuntao Guo & Xunqian Xu, 2022. "Determinants and the Moderating Effects of Individual Characteristics on Autonomous Vehicle Adoption in China," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    17. Moon-Koo Kim & Jong-Hyun Park & Kyungsoo Kim & Byoungkyu Park, 2020. "Identifying factors influencing the slow market diffusion of electric vehicles in Korea," Transportation, Springer, vol. 47(2), pages 663-688, April.
    18. Ye, Fei & Kang, Wanlin & Li, Lixu & Wang, Zhiqiang, 2021. "Why do consumers choose to buy electric vehicles? A paired data analysis of purchase intention configurations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 14-27.
    19. She, Zhen-Yu & Qing Sun, & Ma, Jia-Jun & Xie, Bai-Chen, 2017. "What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China," Transport Policy, Elsevier, vol. 56(C), pages 29-40.
    20. Wang, Shanyong & Wang, Jing & Li, Jun & Wang, Jinpeng & Liang, Liang, 2018. "Policy implications for promoting the adoption of electric vehicles: Do consumer’s knowledge, perceived risk and financial incentive policy matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 58-69.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5777-:d:812631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.