IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/201803.html
   My bibliography  Save this paper

An Averaging GMM Estimator Robust to Misspecification

Author

Listed:
  • Ruoyao Shi

    (Department of Economics, University of California Riverside)

  • Zhipeng Liao

    (UCLA Economics)

Abstract

This paper studies the averaging GMM estimator that combines a conservative GMM estimator based on valid moment conditions and an aggressive GMM estimator based on both valid and possibly misspecified moment conditions, where the weight is the sample analog of an infeasible optimal weight. We establish asymptotic theory on uniform approximation of the upper and lower bounds of the finite-sample truncated risk difference between any two estimators, which is used to compare the averaging GMM estimator and the conservative GMM estimator. Under some sufficient conditions, we show that the asymptotic lower bound of the truncated risk difference between the averaging estimator and the conservative estimator is strictly less than zero, while the asymptotic upper bound is zero uniformly over any degree of misspecification. Extending seminal results on the James-Stein estimator, this uniform dominance is established in non-Gaussian semiparametric nonlinear models. The simulation results support our theoretical findings.

Suggested Citation

  • Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.
  • Handle: RePEc:ucr:wpaper:201803
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/201803.pdf
    File Function: First version, 2018
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    3. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
    4. Yuhong Yang, 2005. "Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation," Biometrika, Biometrika Trust, vol. 92(4), pages 937-950, December.
    5. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    6. Hjort, Nils Lid & Claeskens, Gerda, 2006. "Focused Information Criteria and Model Averaging for the Cox Hazard Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1449-1464, December.
    7. James J. Heckman, 1976. "Estimates of a Human Capital Production Function Embedded in a Life-Cycle Model of Labor Supply," NBER Chapters, in: Household Production and Consumption, pages 225-264, National Bureau of Economic Research, Inc.
    8. Firmin Doko Tchatoka & Jean‐Marie Dufour, 2014. "Identification‐robust inference for endogeneity parameters in linear structural models," Econometrics Journal, Royal Economic Society, vol. 17(1), pages 165-187, February.
    9. Yang, Yuhong, 2000. "Combining Different Procedures for Adaptive Regression," Journal of Multivariate Analysis, Elsevier, vol. 74(1), pages 135-161, July.
    10. Hansen, Bruce E., 2016. "Efficient shrinkage in parametric models," Journal of Econometrics, Elsevier, vol. 190(1), pages 115-132.
    11. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    12. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    13. Bruce E. Hansen, 2017. "Stein-like 2SLS estimator," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 840-852, October.
    14. Guggenberger, Patrik, 2012. "On The Asymptotic Size Distortion Of Tests When Instruments Locally Violate The Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 28(2), pages 387-421, April.
    15. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    16. Donald W. K. Andrews, 1999. "Consistent Moment Selection Procedures for Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 67(3), pages 543-564, May.
    17. Richard Ashley, 2009. "Assessing the credibility of instrumental variables inference with imperfect instruments via sensitivity analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(2), pages 325-337, March.
    18. Kabaila, Paul, 1998. "Valid Confidence Intervals In Regression After Variable Selection," Econometric Theory, Cambridge University Press, vol. 14(4), pages 463-482, August.
    19. Gerda Claeskens & Raymond J. Carroll, 2007. "An asymptotic theory for model selection inference in general semiparametric problems," Biometrika, Biometrika Trust, vol. 94(2), pages 249-265.
    20. Liao, Zhipeng, 2013. "Adaptive Gmm Shrinkage Estimation With Consistent Moment Selection," Econometric Theory, Cambridge University Press, vol. 29(5), pages 857-904, October.
    21. Martin S. Eichenbaum & Lars Peter Hansen & Kenneth J. Singleton, 1988. "A Time Series Analysis of Representative Agent Models of Consumption and Leisure Choice Under Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 103(1), pages 51-78.
    22. Small, Dylan S., 2007. "Sensitivity Analysis for Instrumental Variables Regression With Overidentifying Restrictions," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1049-1058, September.
    23. Hjort N.L. & Claeskens G., 2003. "Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 879-899, January.
    24. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    25. Doko Tchatoka, Firmin Sabro & Dufour, Jean-Marie, 2008. "Instrument endogeneity and identification-robust tests: some analytical results," MPRA Paper 29613, University Library of Munich, Germany.
    26. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    27. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    28. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    29. Lu, Xun & Su, Liangjun, 2015. "Jackknife model averaging for quantile regressions," Journal of Econometrics, Elsevier, vol. 188(1), pages 40-58.
    30. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(1), pages 176-222, February.
    31. Hong, Han & Preston, Bruce & Shum, Matthew, 2003. "Generalized Empirical Likelihood–Based Model Selection Criteria For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 19(6), pages 923-943, December.
    32. Moon, Hyungsik Roger & Schorfheide, Frank, 2009. "Estimation with overidentifying inequality moment conditions," Journal of Econometrics, Elsevier, vol. 153(2), pages 136-154, December.
    33. Berkowitz, Daniel & Caner, Mehmet & Fang, Ying, 2012. "The validity of instruments revisited," Journal of Econometrics, Elsevier, vol. 166(2), pages 255-266.
    34. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    35. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
    36. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    37. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    2. Ruoyao Shi, 2021. "An Averaging Estimator for Two Step M Estimation in Semiparametric Models," Working Papers 202105, University of California at Riverside, Department of Economics.
    3. Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Francis J. DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM, Second Version," PIER Working Paper Archive 14-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Dec 2014.
    5. Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
    6. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    7. Francis DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM, Second Version," PIER Working Paper Archive 15-027, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 10 Aug 2015.
    8. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021. "Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
    9. Xu Cheng & Zhipeng Liao & Ruoyao Shi, 2013. "Uniform Asymptotic Risk of Averaging GMM Estimator Robust to Misspecification, Second Version," PIER Working Paper Archive 15-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 25 Mar 2015.
    10. Hyunseung Kang & Youjin Lee & T. Tony Cai & Dylan S. Small, 2022. "Two robust tools for inference about causal effects with invalid instruments," Biometrics, The International Biometric Society, vol. 78(1), pages 24-34, March.
    11. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    12. Edvard Bakhitov, 2020. "Frequentist Shrinkage under Inequality Constraints," Papers 2001.10586, arXiv.org.
    13. Doko Tchatoka, Firmin, 2012. "Specification tests with weak and invalid instruments," Working Papers 15063, University of Tasmania, Tasmanian School of Business and Economics, revised 26 Jun 2012.
    14. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    15. Chu‐An Liu & Biing‐Shen Kuo, 2016. "Model averaging in predictive regressions," Econometrics Journal, Royal Economic Society, vol. 19(2), pages 203-231, June.
    16. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    17. Minsu Chang & Francis J. DiTraglia, 2020. "A Generalized Focused Information Criterion for GMM," Papers 2011.07085, arXiv.org.
    18. Lewbel, Arthur & Choi, Jin Young & Zhou, Zhuzhu, 2023. "Over-identified Doubly Robust identification and estimation," Journal of Econometrics, Elsevier, vol. 235(1), pages 25-42.
    19. Aman Ullah & Xinyu Zhang, 2015. "Grouped Model Averaging for Finite Sample Size," Working Papers 201501, University of California at Riverside, Department of Economics.
    20. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:201803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.