IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/454.html
   My bibliography  Save this paper

Competitive outcomes and the core of TU market games

Author

Listed:
  • Brangewitz, Sonja

    (Center for Mathematical Economics, Bielefeld University)

  • Gamp, Jan-Philip

    (Center for Mathematical Economics, Bielefeld University)

Abstract

We investigate the relationship between certain subsets of the core for TU market games and competitive payoff vectors of certain markets linked to that game. This can be considered as the case in between the two extreme cases of Shapley and Shubik (1975). They remark already that their result can be extended to any closed convex subset of the core, but they omit the details of the proof which we present here. This more general case is in particular interesting, as the two theorems of Shapley and Shubik (1975) are included as special cases.

Suggested Citation

  • Brangewitz, Sonja & Gamp, Jan-Philip, 2014. "Competitive outcomes and the core of TU market games," Center for Mathematical Economics Working Papers 454, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:454
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2671702/2671703
    File Function: First Version, 2011
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Ning & Trockel, Walter & Yang, Zaifu, 2008. "Competitive outcomes and endogenous coalition formation in an n-person game," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 853-860, July.
    2. Brangewitz, Sonja & Gamp, Jan-Philip, 2016. "Competitive outcomes and the inner core of NTU market games," Center for Mathematical Economics Working Papers 449, Center for Mathematical Economics, Bielefeld University.
    3. Qin, Cheng-Zhong, 1993. "A Conjecture of Shapley and Shubik on Competitive Outcomes in the Cores of NTU Market Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(4), pages 335-344.
    4. Garratt, Rod & Qin, Cheng-Zhong, 2000. "On Market Games When Agents Cannot Be in Two Places at Once," Games and Economic Behavior, Elsevier, vol. 31(2), pages 165-173, May.
    5. Shapley, Lloyd S. & Shubik, Martin, 1969. "On market games," Journal of Economic Theory, Elsevier, vol. 1(1), pages 9-25, June.
    6. Inoue, Tomoki, 2011. "Representation of TU games by coalition production economies," Center for Mathematical Economics Working Papers 430, Center for Mathematical Economics, Bielefeld University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brangewitz, Sonja & Gamp, Jan-Philip, 2016. "Inner Core, Asymmetric Nash Bargaining Solutions and Competitive Payoffs," Center for Mathematical Economics Working Papers 453, Center for Mathematical Economics, Bielefeld University.
    2. Sonja Brangewitz & Jan-Philip Gamp, 2014. "Competitive outcomes and the inner core of NTU market games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(3), pages 529-554, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonja Brangewitz & Jan-Philip Gamp, 2014. "Competitive outcomes and the inner core of NTU market games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(3), pages 529-554, November.
    2. Bejan, Camelia & Gómez, Juan Camilo, 2012. "A market interpretation of the proportional extended core," Economics Letters, Elsevier, vol. 117(3), pages 636-638.
    3. Aslan, Fatma & Duman, Papatya & Trockel, Walter, 2019. "Duality for General TU-games Redefined," Center for Mathematical Economics Working Papers 620, Center for Mathematical Economics, Bielefeld University.
    4. Inoue, Tomoki, 2013. "Representation of non-transferable utility games by coalition production economies," Journal of Mathematical Economics, Elsevier, vol. 49(2), pages 141-149.
    5. Brangewitz, Sonja & Gamp, Jan-Philip, 2016. "Inner Core, Asymmetric Nash Bargaining Solutions and Competitive Payoffs," Center for Mathematical Economics Working Papers 453, Center for Mathematical Economics, Bielefeld University.
    6. Fatma Aslan & Papatya Duman & Walter Trockel, 2020. "Non-cohesive TU-games: Duality and P-core," Working Papers CIE 136, Paderborn University, CIE Center for International Economics.
    7. Inoue, Tomoki, 2012. "Representation of transferable utility games by coalition production economies," Journal of Mathematical Economics, Elsevier, vol. 48(3), pages 143-147.
    8. Inoue, Tomoki, 2011. "Representation of TU games by coalition production economies," Center for Mathematical Economics Working Papers 430, Center for Mathematical Economics, Bielefeld University.
    9. Camelia Bejan & Juan Camilo Gómez, 2017. "Employment lotteries, endogenous firm formation and the aspiration core," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(2), pages 215-226, October.
    10. Fatma Aslan & Papatya Duman & Walter Trockel, 2020. "Non-cohesive TU-games: Efficiency and Duality," Working Papers CIE 138, Paderborn University, CIE Center for International Economics.
    11. Sun, Ning & Trockel, Walter & Yang, Zaifu, 2008. "Competitive outcomes and endogenous coalition formation in an n-person game," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 853-860, July.
    12. Qin, Cheng-Zhong & Shapley, Lloyd S. & Shimomura, Ken-Ichi, 2006. "The Walras core of an economy and its limit theorem," Journal of Mathematical Economics, Elsevier, vol. 42(2), pages 180-197, April.
    13. Gonzalez, Stéphane & Grabisch, Michel, 2016. "Multicoalitional solutions," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 1-10.
    14. Wooders, Myrna, 2008. "Market games and clubs," MPRA Paper 33968, University Library of Munich, Germany, revised Dec 2010.
    15. Camelia Bejan & Juan Camilo Gómez, 2018. "Equal treatment without large numbers," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1239-1259, November.
    16. Jingang Zhao, 2018. "A Reexamination of the Coase Theorem," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 3(1), pages 111-132, December.
    17. Hirbod Assa & Sheridon Elliston & Ehud Lehrer, 2016. "Joint games and compatibility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(1), pages 91-113, January.
    18. Martin Shubik, 1984. "The Cooperative Form, the Value and the Allocation of Joint Costs and Benefits," Cowles Foundation Discussion Papers 706, Cowles Foundation for Research in Economics, Yale University.
    19. Avishay Aiche, 2019. "On the equal treatment imputations subset in the bargaining set for smooth vector-measure games with a mixed measure space of players," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 411-421, June.
    20. O. Tejada and M. Alvarez-Mozos, 2012. "Vertical Syndication-Proof Competitive Prices in Multilateral Markets," Working Papers in Economics 283, Universitat de Barcelona. Espai de Recerca en Economia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.