IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01293785.html
   My bibliography  Save this paper

Multicoalitional solutions

Author

Listed:
  • Stéphane Gonzalez

    (UJM - Université Jean Monnet - Saint-Étienne, GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

The paper proposes a new concept of solution for TU games, called multicoalitional solution, which makes sense in the context of production games, that is, where $v(S)$ is the production or income per unit of time. By contrast to classical solutions where elements of the solution are payoff vectors, multicoalitional solutions give in addition an allocation time to each coalition, which permits to realize the payoff vector. We give two instances of such solutions, called the d-multicoalitional core and the c-multicoalitional core, and both arise as the strong Nash equilibria of two strategic games, where in the first utility per active unit of time is maximized, while in the second it is the utility per total unit of time. We show that the d-core (or aspiration core) of Benett, and the c-core of Guesnerie and Oddou are strongly related to the d-multicoalitional and c-multicoalitional cores, respectively, and that the latter ones can be seen as an implementation of the former ones in a noncooperative framework.

Suggested Citation

  • Stéphane Gonzalez & Michel Grabisch, 2016. "Multicoalitional solutions," Post-Print halshs-01293785, HAL.
  • Handle: RePEc:hal:journl:halshs-01293785
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01293785
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01293785/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. S. Flåm & L. Koutsougeras, 2010. "Private information, transferable utility, and the core," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(3), pages 591-609, March.
    2. Sun, Ning & Trockel, Walter & Yang, Zaifu, 2008. "Competitive outcomes and endogenous coalition formation in an n-person game," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 853-860, July.
    3. Camelia Bejan & Juan Gómez, 2012. "Axiomatizing core extensions," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 885-898, November.
    4. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    5. Stéphane Gonzalez & Michel Grabisch, 2015. "Preserving coalitional rationality for non-balanced games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 733-760, August.
    6. Guesnerie, R. & Oddou, C., 1979. "On economic games which are not necessarily superadditive : Solution concepts and application to a local public good problem with few a agents," Economics Letters, Elsevier, vol. 3(4), pages 301-306.
    7. Camelia Bejan & Juan Camilo Gómez, 2012. "Using The Aspiration Core To Predict Coalition Formation," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-13.
    8. Stéphane Gonzalez & Michel Grabisch, 2015. "Preserving coalitional rationality for non-balanced games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 733-760, August.
    9. Benyamin Shitovitz, 1997. "A comparison between the core and the monopoly solutions in a mixed exchange economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(3), pages 559-563.
    10. Koczy, Laszlo A. & Lauwers, Luc, 2004. "The coalition structure core is accessible," Games and Economic Behavior, Elsevier, vol. 48(1), pages 86-93, July.
    11. Lloyd S. Shapley, 1967. "On balanced sets and cores," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 14(4), pages 453-460.
    12. Michel Grabisch & Pedro Miranda, 2008. "On the vertices of the k-additive core," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00321625, HAL.
    13. John G. Cross, 1967. "Some theoretic characteristics of economic and political coalitions," Journal of Conflict Resolution, Peace Science Society (International), vol. 11(2), pages 184-195, June.
    14. Walter Trockel, 2005. "Core-equivalence for the Nash bargaining solution," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 25(1), pages 255-263, January.
    15. Garratt, Rod & Qin, Cheng-Zhong, 2000. "On Market Games When Agents Cannot Be in Two Places at Once," Games and Economic Behavior, Elsevier, vol. 31(2), pages 165-173, May.
    16. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, April.
    17. Juan C. Cesco, 2012. "Nonempty Core-Type Solutions Over Balanced Coalitions In Tu-Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 1-16.
    18. Kannai, Yakar, 1992. "The core and balancedness," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 12, pages 355-395, Elsevier.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehud Lehrer & Roee Teper, 2020. "Set-valued capacities: multi-agenda decision making," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(1), pages 233-248, February.
    2. Stéphane Gonzalez & Aymeric Lardon, 2018. "Optimal deterrence of cooperation," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(1), pages 207-227, March.
    3. Ferreira, João J.M. & Jalali, Marjan S. & Ferreira, Fernando A.F., 2018. "Enhancing the decision-making virtuous cycle of ethical banking practices using the Choquet integral," Journal of Business Research, Elsevier, vol. 88(C), pages 492-497.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Gonzalez & Michel Grabisch, 2015. "Autonomous coalitions," Annals of Operations Research, Springer, vol. 235(1), pages 301-317, December.
    2. repec:hal:pseose:halshs-00881108 is not listed on IDEAS
    3. repec:hal:pseose:halshs-01235632 is not listed on IDEAS
    4. Fatma Aslan & Papatya Duman & Walter Trockel, 2019. "Duality for General TU-games Redefined," Working Papers CIE 121, Paderborn University, CIE Center for International Economics.
    5. Fatma Aslan & Papatya Duman & Walter Trockel, 2020. "Non-cohesive TU-games: Duality and P-core," Working Papers CIE 136, Paderborn University, CIE Center for International Economics.
    6. Fatma Aslan & Papatya Duman & Walter Trockel, 2020. "Non-cohesive TU-games: Efficiency and Duality," Working Papers CIE 138, Paderborn University, CIE Center for International Economics.
    7. Stéphane Gonzalez & Aymeric Lardon, 2018. "Optimal deterrence of cooperation," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(1), pages 207-227, March.
    8. Camelia Bejan & Juan Camilo Gómez & Anne van den Nouweland, 2022. "On the importance of reduced games in axiomatizing core extensions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(3), pages 637-668, October.
    9. Michel Grabisch, 2016. "Remarkable polyhedra related to set functions, games and capacities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 301-326, July.
    10. Predtetchinski, Arkadi & Jean-Jacques Herings, P., 2004. "A necessary and sufficient condition for non-emptiness of the core of a non-transferable utility game," Journal of Economic Theory, Elsevier, vol. 116(1), pages 84-92, May.
    11. Jean Guillaume Forand & Metin Uyanık, 2019. "Fixed-point approaches to the proof of the Bondareva–Shapley Theorem," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(1), pages 117-124, May.
    12. Michel Grabisch, 2016. "Remarkable polyhedra related to set functions, games," Documents de travail du Centre d'Economie de la Sorbonne 16081, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Jingang Zhao, 2008. "The Maximal Payoff and Coalition Formation in Coalitional Games," Working Papers 2008.27, Fondazione Eni Enrico Mattei.
    14. Inoue, Tomoki, 2011. "Representation of TU games by coalition production economies," Center for Mathematical Economics Working Papers 430, Center for Mathematical Economics, Bielefeld University.
    15. Sonja Brangewitz & Jan-Philip Gamp, 2014. "Competitive outcomes and the inner core of NTU market games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(3), pages 529-554, November.
    16. Jingang Zhao, 2018. "A Reexamination of the Coase Theorem," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 3(1), pages 111-132, December.
    17. Yi-You Yang, 2020. "On the characterizations of viable proposals," Theory and Decision, Springer, vol. 89(4), pages 453-469, November.
    18. repec:hal:pseose:hal-01372858 is not listed on IDEAS
    19. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, September.
    20. Camelia Bejan & Juan Camilo Gómez, 2018. "Equal treatment without large numbers," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(4), pages 1239-1259, November.
    21. Alexander Kovalenkov & Myrna Holtz Wooders, 2001. "An Exact Bound on Epsilon for Nonemptiness of Epsilon Cores of Games," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 654-678, November.
    22. Hirbod Assa & Sheridon Elliston & Ehud Lehrer, 2016. "Joint games and compatibility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(1), pages 91-113, January.
    23. Camelia Bejan & Juan Gómez, 2012. "Axiomatizing core extensions," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 885-898, November.

    More about this item

    Keywords

    Cooperative game; core; aspiration core; strong Nash equilibrium;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01293785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.