IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v22y1993i4p335-44.html
   My bibliography  Save this article

A Conjecture of Shapley and Shubik on Competitive Outcomes in the Cores of NTU Market Games

Author

Listed:
  • Qin, Cheng-Zhong

Abstract

It is shown that for every NTU market game, there is a market that represents the game whose competitive payoff vectors completely fill up the inner core of the game. It is also shown that for every NTU market game and for any point in its inner core, there is a market that represents the game and further has the given inner core point as its unique competitive payoff vector. The results prove a conjecture of Shapley and Shubik.

Suggested Citation

  • Qin, Cheng-Zhong, 1993. "A Conjecture of Shapley and Shubik on Competitive Outcomes in the Cores of NTU Market Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(4), pages 335-344.
  • Handle: RePEc:spr:jogath:v:22:y:1993:i:4:p:335-44
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonja Brangewitz & Jan-Philip Gamp, 2014. "Competitive outcomes and the inner core of NTU market games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(3), pages 529-554, November.
    2. Sun, Ning & Trockel, Walter & Yang, Zaifu, 2008. "Competitive outcomes and endogenous coalition formation in an n-person game," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 853-860, July.
    3. Cheng-Zhong Qin & Martin Shubik, 2012. "Selecting a unique competitive equilibrium with default penalties," Journal of Economics, Springer, vol. 106(2), pages 119-132, June.
    4. Brangewitz, Sonja & Gamp, Jan-Philip, 2014. "Competitive outcomes and the core of TU market games," Center for Mathematical Economics Working Papers 454, Center for Mathematical Economics, Bielefeld University.
    5. Camelia Bejan & Juan Camilo Gómez, 2017. "Employment lotteries, endogenous firm formation and the aspiration core," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(2), pages 215-226, October.
    6. Fatma Aslan & Papatya Duman & Walter Trockel, 2019. "Duality for General TU-games Redefined," Working Papers CIE 121, Paderborn University, CIE Center for International Economics.
    7. Inoue, Tomoki, 2013. "Representation of non-transferable utility games by coalition production economies," Journal of Mathematical Economics, Elsevier, vol. 49(2), pages 141-149.
    8. Qin, Cheng-Zhong & Shapley, Lloyd S. & Shimomura, Ken-Ichi, 2006. "The Walras core of an economy and its limit theorem," Journal of Mathematical Economics, Elsevier, vol. 42(2), pages 180-197, April.
    9. Brangewitz, Sonja & Gamp, Jan-Philip, 2016. "Inner Core, Asymmetric Nash Bargaining Solutions and Competitive Payoffs," Center for Mathematical Economics Working Papers 453, Center for Mathematical Economics, Bielefeld University.
    10. Page Jr., Frank H. & Wooders, Myrna, 2009. "Strategic basins of attraction, the path dominance core, and network formation games," Games and Economic Behavior, Elsevier, vol. 66(1), pages 462-487, May.
    11. Brangewitz, Sonja & Gamp, Jan-Philip, 2013. "Asymmetric Nash bargaining solutions and competitive payoffs," Economics Letters, Elsevier, vol. 121(2), pages 224-227.
    12. Inoue, Tomoki, 2011. "Representation of TU games by coalition production economies," Center for Mathematical Economics Working Papers 430, Center for Mathematical Economics, Bielefeld University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:22:y:1993:i:4:p:335-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.