IDEAS home Printed from https://ideas.repec.org/p/bgu/wpaper/1801.html
   My bibliography  Save this paper

Predicting Default More Accurately: To Proxy Or Not To Proxy For Default

Author

Listed:
  • Koresh Galil

    (BGU)

  • Neta Gilat

    (BGU)

Abstract

Previous studies targeting accuracy improvement of default models mainly focused on the choice of the explanatory variables and the statistical approach. We alter the focus to the choice of the dependent variable. We particularly explore whether the common practice (in the literature) of using proxies for default events (bankruptcy or delisting) to increase sample size indeed improves accuracy. We examine four definitions of financial distress and show that each definition carries considerably different characteristics. We discover that rating agencies effort to measure correctly the timing of default is valuable. Our main conclusion is that one cannot improve default prediction by making use of other distress events.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Koresh Galil & Neta Gilat, 2018. "Predicting Default More Accurately: To Proxy Or Not To Proxy For Default," Working Papers 1801, Ben-Gurion University of the Negev, Department of Economics.
  • Handle: RePEc:bgu:wpaper:1801
    as

    Download full text from publisher

    File URL: http://in.bgu.ac.il/en/humsos/Econ/Workingpapers/1801.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    2. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    3. Zvika Afik & Ohad Arad & Koresh Galil, 2012. "Using Merton model: an empirical assessment of alternatives," Working Papers 1202, Ben-Gurion University of the Negev, Department of Economics.
    4. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    5. Bauer, Julian & Agarwal, Vineet, 2014. "Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 432-442.
    6. repec:bla:jfinan:v:53:y:1998:i:4:p:1389-1413 is not listed on IDEAS
    7. Marshall E. Blume & Felix Lim & A. Craig MacKinlay, "undated". "The Declining Credit Quality of US Corporate Debt: Myth or Reality?," Rodney L. White Center for Financial Research Working Papers 03-98, Wharton School Rodney L. White Center for Financial Research.
    8. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    9. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    10. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    11. Avramov, Doron & Chordia, Tarun & Jostova, Gergana & Philipov, Alexander, 2009. "Credit ratings and the cross-section of stock returns," Journal of Financial Markets, Elsevier, vol. 12(3), pages 469-499, August.
    12. Jonathan Macey & Maureen O'Hara & David Pompilio, 2008. "Down and Out in the Stock Market: The Law and Economics of the Delisting Process," Journal of Law and Economics, University of Chicago Press, vol. 51(4), pages 683-713, November.
    13. Antje Brunner & Jan Pieter Krahnen, 2008. "Multiple Lenders and Corporate Distress: Evidence on Debt Restructuring," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 415-442.
    14. Marshall E. Blume & Felix Lim & A. Craig MacKinlay, "undated". "The Declining Credit Quality of US Corporate Debt: Myth or Reality?," Rodney L. White Center for Financial Research Working Papers 3-98, Wharton School Rodney L. White Center for Financial Research.
    15. Aysun Alp, 2013. "Structural Shifts in Credit Rating Standards," Journal of Finance, American Finance Association, vol. 68(6), pages 2435-2470, December.
    16. Lu, Ching-Chih & Chollete, Loran, 2010. "Bankruptcy and the size effect," UiS Working Papers in Economics and Finance 2010/6, University of Stavanger.
    17. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    18. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    19. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    20. Ramin P. Baghai & Henri Servaes & Ane Tamayo, 2014. "Have Rating Agencies Become More Conservative? Implications for Capital Structure and Debt Pricing," Journal of Finance, American Finance Association, vol. 69(5), pages 1961-2005, October.
    21. Lorenzo Garlappi & Tao Shu & Hong Yan, 2008. "Default Risk, Shareholder Advantage, and Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2743-2778, November.
    22. repec:bla:jfinan:v:59:y:2004:i:2:p:831-868 is not listed on IDEAS
    23. Shumway, Tyler, 2001. "Forecasting Bankruptcy More Accurately: A Simple Hazard Model," The Journal of Business, University of Chicago Press, vol. 74(1), pages 101-124, January.
    24. repec:bla:jfinan:v:53:y:1998:i:3:p:1131-1147 is not listed on IDEAS
    25. Sreedhar T. Bharath & Tyler Shumway, 2008. "Forecasting Default with the Merton Distance to Default Model," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1339-1369, May.
    26. Afik, Zvika & Arad, Ohad & Galil, Koresh, 2016. "Using Merton model for default prediction: An empirical assessment of selected alternatives," Journal of Empirical Finance, Elsevier, vol. 35(C), pages 43-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koresh Galil & Margalit Samuel & Offer Moshe Shapir & Wolf Wagner, 2023. "Bailouts and the modeling of bank distress," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 46(1), pages 7-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
    2. Jens Hilscher & Mungo Wilson, 2017. "Credit Ratings and Credit Risk: Is One Measure Enough?," Management Science, INFORMS, vol. 63(10), pages 3414-3437, October.
    3. Aggarwal, Nidhi & Singh, Manish K. & Thomas, Susan, 2023. "Do decreases in Distance-to-Default predict rating downgrades?," Economic Modelling, Elsevier, vol. 129(C).
    4. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    5. Deniz Anginer & Çelim Yıldızhan, 2018. "Is There a Distress Risk Anomaly? Pricing of Systematic Default Risk in the Cross-section of Equity Returns [The risk-adjusted cost of financial distress]," Review of Finance, European Finance Association, vol. 22(2), pages 633-660.
    6. Nidhi Aggarwal & Manish K. Singh & Susan Thomas, 2022. "Informational efficiency of credit ratings," Working Papers 14, xKDR.
    7. Marta Gómez-Puig & Simón Sosvilla-Rivero & Manish K. Singh, 2018. "“Incorporating creditors' seniority into contingent claim models:Application to peripheral euro area countries”," IREA Working Papers 201803, University of Barcelona, Research Institute of Applied Economics, revised Feb 2018.
    8. B Korcan Ak & Patricia M Dechow & Yuan Sun & Annika Yu Wang, 2013. "The use of financial ratio models to help investors predict and interpret significant corporate events," Australian Journal of Management, Australian School of Business, vol. 38(3), pages 553-598, December.
    9. Evangelos C. Charalambakis & Ian Garrett, 2019. "On corporate financial distress prediction: What can we learn from private firms in a developing economy? Evidence from Greece," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 467-491, February.
    10. Singh, Manish K. & Gómez-Puig, Marta & Sosvilla-Rivero, Simón, 2015. "Bank risk behavior and connectedness in EMU countries," Journal of International Money and Finance, Elsevier, vol. 57(C), pages 161-184.
    11. Alam, Nurul & Gao, Junbin & Jones, Stewart, 2021. "Corporate failure prediction: An evaluation of deep learning vs discrete hazard models," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    12. Jens Hilscher & Mungo Wilson, 2011. "Credit ratings and credit risk," Working Papers 31, Brandeis University, Department of Economics and International Business School.
    13. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    14. Duan, Jin-Chuan & Sun, Jie & Wang, Tao, 2012. "Multiperiod corporate default prediction—A forward intensity approach," Journal of Econometrics, Elsevier, vol. 170(1), pages 191-209.
    15. Löffler, Gunter & Maurer, Alina, 2011. "Incorporating the dynamics of leverage into default prediction," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3351-3361.
    16. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    17. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    18. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    19. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    20. Balios, Dimitris & Thomadakis, Stavros & Tsipouri, Lena, 2016. "Credit rating model development: An ordered analysis based on accounting data," Research in International Business and Finance, Elsevier, vol. 38(C), pages 122-136.

    More about this item

    Keywords

    Default; Bankruptcy; Financial Distress; Delisting; Bankruptcy Prediction; Default Prediction.;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bgu:wpaper:1801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aamer Abu-Qarn (email available below). General contact details of provider: https://edirc.repec.org/data/edbguil.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.