IDEAS home Printed from https://ideas.repec.org/p/bep/mchbio/1035.html
   My bibliography  Save this paper

Nonparametric and semiparametric inference for models of tumor size and metastasis

Author

Listed:
  • Debashis Ghosh

    (University of Michigan)

Abstract

There has been some recent work in the statistical literature for modelling the relationship between the size of primary cancers and the occurrences of metastases. While nonparametric methods have been proposed for estimation of the tumor size distribution at which metastatic transition occurs, their asymptotic properties have not been studied. In addition, no testing or regression methods are available so that potential confounders and prognostic factors can be adjusted for. We develop a unified approach to nonparametric and semiparametric analysis of modelling tumor size-metastasis data in this article. An equivalence between the models considered by previous authors with survival data structures. Based on this relationship, we develop nonparametric testing procedures and semiparametric regression methodology of modelling the effect of size of tumor on the probability at which metastatic transitions occur in two situations. Asymptotic properties of these estimators are provided. Procedures that achieve the semiparametric information bound are also considered. The proposed methodology is applied to data from a screening study in lung cancer.

Suggested Citation

  • Debashis Ghosh, 2004. "Nonparametric and semiparametric inference for models of tumor size and metastasis," The University of Michigan Department of Biostatistics Working Paper Series 1035, Berkeley Electronic Press.
  • Handle: RePEc:bep:mchbio:1035
    Note: oai:bepress.com:umichbiostat-1035
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1035&context=umichbiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Ghosh, 2001. "Efficiency Considerations in the Additive Hazards Model with Current Status Data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 55(3), pages 367-376, November.
    2. Torben Martinussen, 2002. "Efficient estimation in additive hazards regression with current status data," Biometrika, Biometrika Trust, vol. 89(3), pages 649-658, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debashis Ghosh, 2004. "Model checking techniques for regression models in cancer screening," The University of Michigan Department of Biostatistics Working Paper Series 1036, Berkeley Electronic Press.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
    2. Junlong Li & Chunjie Wang & Jianguo Sun, 2012. "Regression analysis of clustered interval-censored failure time data with the additive hazards model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 1041-1050, December.
    3. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    4. Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.
    5. Shuangge Ma, 2011. "Additive risk model for current status data with a cured subgroup," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 117-134, February.
    6. Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
    7. Xuewen Lu & Peter X.-K. Song, 2015. "Efficient Estimation of the Partly Linear Additive Hazards Model with Current Status Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 306-328, March.
    8. Shanshan Lu & Jingjing Wu & Xuewen Lu, 2019. "Efficient estimation of the varying-coefficient partially linear proportional odds model with current status data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 173-194, March.
    9. Nils Lid Hjort & Emil Aas Stoltenberg, 2023. "The partly parametric and partly nonparametric additive risk model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 372-402, April.
    10. Li, Jinqing & Ma, Jun, 2019. "Maximum penalized likelihood estimation of additive hazards models with partly interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 170-180.
    11. Lu, Xuewen & Song, Peter X.-K., 2012. "On efficient estimation in additive hazards regression with current status data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2051-2058.
    12. Huazhen Yu & Rui Zhang & Lixin Zhang, 2024. "Copula-based analysis of dependent current status data with semiparametric linear transformation model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 742-775, October.
    13. Stephanie Chan & Xuan Wang & Ina Jazić & Sarah Peskoe & Yingye Zheng & Tianxi Cai, 2021. "Developing and evaluating risk prediction models with panel current status data," Biometrics, The International Biometric Society, vol. 77(2), pages 599-609, June.
    14. Yanqin Feng & Ling Ma & Jianguo Sun, 2015. "Regression Analysis of Current Status Data Under the Additive Hazards Model with Auxiliary Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 118-136, March.
    15. Lianming Wang & David B. Dunson, 2011. "Semiparametric Bayes' Proportional Odds Models for Current Status Data with Underreporting," Biometrics, The International Biometric Society, vol. 67(3), pages 1111-1118, September.
    16. Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
    17. Chi-Chung Wen & Chien-Tai Lin, 2011. "Analysis of Current Status Data with Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 760-769, September.
    18. Lu Tian & Tianxi Cai, 2004. "On the Accelerated Failure Time Model for Current Status and Interval Censored Data," Harvard University Biostatistics Working Paper Series 1014, Berkeley Electronic Press.
    19. Shuangge Ma, 2007. "Additive risk model with case-cohort sampled current status data," Statistical Papers, Springer, vol. 48(4), pages 595-608, October.
    20. Lu, Xuewen & Pordeli, Pooneh & Burke, Murray D. & Song, Peter X.-K., 2016. "Partially linear single-index proportional hazards model with current status data," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 14-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:mchbio:1035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.