IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i3d10.1007_s00180-018-0806-y.html
   My bibliography  Save this article

Additive–multiplicative hazards model with current status data

Author

Listed:
  • Wanrong Liu

    (Hunan Normal University)

  • Jianglin Fang

    (Hunan Normal University
    Hunan Institute of Engineering)

  • Xuewen Lu

    (Hunan Normal University
    University of Calgary)

Abstract

The additive–multiplicative hazards (AMH) regression model specifies an additive and multiplicative form on the hazard function for the counting process associated with a multidimensional covariate process, which contains the Cox proportional hazards model and the additive hazards model as its special cases. In this paper, we study the AMH model with current status data, where the cumulative hazard hazard function is assumed to be nonparametric and is estimated using B-splines with monotonicity constraint on the functional, while a simultaneous sieve maximum likelihood estimation is proposed to estimate regression parameters. The proposed estimator for the parameter vector is shown to be asymptotically normal and semiparametric efficient. The B-splines estimator of the functional of the cumulative hazard function is shown to achieve the optimal nonparametric rate of convergence. A simulation study is conducted to examine the finite sample performance of the proposed estimators and algorithm, and a real data example is presented for illustration.

Suggested Citation

  • Wanrong Liu & Jianglin Fang & Xuewen Lu, 2018. "Additive–multiplicative hazards model with current status data," Computational Statistics, Springer, vol. 33(3), pages 1245-1266, September.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:3:d:10.1007_s00180-018-0806-y
    DOI: 10.1007/s00180-018-0806-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0806-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0806-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
    2. C. P. Farrington, 2000. "Residuals for Proportional Hazards Models with Interval-Censored Survival Data," Biometrics, The International Biometric Society, vol. 56(2), pages 473-482, June.
    3. Minggen Lu & Ying Zhang & Jian Huang, 2007. "Estimation of the mean function with panel count data using monotone polynomial splines," Biometrika, Biometrika Trust, vol. 94(3), pages 705-718.
    4. Torben Martinussen, 2002. "Efficient estimation in additive hazards regression with current status data," Biometrika, Biometrika Trust, vol. 89(3), pages 649-658, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
    2. Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
    3. Chen, Yurong & Feng, Yanqin & Sun, Jianguo, 2015. "Regression analysis of multivariate current status data with auxiliary covariates under the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 87(C), pages 34-45.
    4. Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.
    5. Liu, Xiaoyu & Xiang, Liming, 2021. "Generalized accelerated hazards mixture cure models with interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    6. Lu, Xuewen & Pordeli, Pooneh & Burke, Murray D. & Song, Peter X.-K., 2016. "Partially linear single-index proportional hazards model with current status data," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 14-36.
    7. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    8. Minggen Lu & Dana Loomis, 2013. "Spline-based semiparametric estimation of partially linear Poisson regression with single-index models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 905-922, December.
    9. Scolas, Sylvie & Legrand, Catherine & Oulhaj, Abderrahim & El Ghouch, Anouar, 2016. "Diagnostic checks in mixture cure models with interval-censoring," LIDAM Discussion Papers ISBA 2016014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
    11. Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
    12. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    13. Daouia, Abdelaati & Laurent, Thibault & Noh, Hohsuk, 2017. "npbr: A Package for Nonparametric Boundary Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i09).
    14. Fábio Prataviera & Elizabeth M. Hashimoto & Edwin M. M. Ortega & Taciana V. Savian & Gauss M. Cordeiro, 2023. "Interval-Censored Regression with Non-Proportional Hazards with Applications," Stats, MDPI, vol. 6(2), pages 1-14, May.
    15. Lu, Minggen, 2010. "Spline-based sieve maximum likelihood estimation in the partly linear model under monotonicity constraints," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2528-2542, November.
    16. Junlong Li & Chunjie Wang & Jianguo Sun, 2012. "Regression analysis of clustered interval-censored failure time data with the additive hazards model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 1041-1050, December.
    17. Yanqin Feng & Ling Ma & Jianguo Sun, 2015. "Regression Analysis of Current Status Data Under the Additive Hazards Model with Auxiliary Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 118-136, March.
    18. Debashis Ghosh, 2004. "Nonparametric and semiparametric inference for models of tumor size and metastasis," The University of Michigan Department of Biostatistics Working Paper Series 1035, Berkeley Electronic Press.
    19. Chunling Wang & Xiaoyan Lin, 2022. "Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data," Stats, MDPI, vol. 5(2), pages 1-17, May.
    20. Lianming Wang & David B. Dunson, 2011. "Semiparametric Bayes' Proportional Odds Models for Current Status Data with Underreporting," Biometrics, The International Biometric Society, vol. 67(3), pages 1111-1118, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:3:d:10.1007_s00180-018-0806-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.