The partly parametric and partly nonparametric additive risk model
Author
Abstract
Suggested Citation
DOI: 10.1007/s10985-021-09535-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Torben Martinussen, 2002. "A flexible additive multiplicative hazard model," Biometrika, Biometrika Trust, vol. 89(2), pages 283-298, June.
- Torben Martinussen, 2002. "Efficient estimation in additive hazards regression with current status data," Biometrika, Biometrika Trust, vol. 89(3), pages 649-658, August.
- Torben Martinussen & Thomas H. Scheike, 2009. "Covariate Selection for the Semiparametric Additive Risk Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 602-619, December.
- Martin Jullum & Nils Lid Hjort, 2019. "What price semiparametric Cox regression?," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 406-438, July.
- Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
- Ørnulf Borgan & Rosemeire L. Fiaccone & Robin Henderson & Mauricio L. Barreto, 2007. "Dynamic Analysis of Recurrent Event Data with Missing Observations, with Application to Infant Diarrhoea in Brazil," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 53-69, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
- Céline Cunen & Nils Lid Hjort, 2020. "Confidence Distributions for FIC Scores," Econometrics, MDPI, vol. 8(3), pages 1-28, July.
- Emil Aas Stoltenberg & Nils Lid Hjort, 2021. "Models and inference for on–off data via clipped Ornstein–Uhlenbeck processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 908-929, September.
- Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023.
"Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
- Jeffrey S. Racine & Qi Li & Li Zheng, 2018. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Department of Economics Working Papers 2018-10, McMaster University.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
- Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
- Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.
- Bhattacharya, Debopam & Dupas, Pascaline, 2012.
"Inferring welfare maximizing treatment assignment under budget constraints,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
- Debopam Bhattacharya & Pascaline Dupas, 2008. "Inferring Welfare Maximizing Treatment Assignment under Budget Constraints," NBER Working Papers 14447, National Bureau of Economic Research, Inc.
- Schomaker Michael & Heumann Christian, 2011. "Model Averaging in Factor Analysis: An Analysis of Olympic Decathlon Data," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(1), pages 1-15, January.
- Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Forecasting Nigerian Inflation using Model Averaging methods: Modelling Frameworks to Central Banks," MPRA Paper 88754, University Library of Munich, Germany, revised Feb 2018.
- José Manuel Cordero Ferrera & Manuel Muñiz Pérez & Rosa Simancas Rodríguez, 2015. "The influence of socioeconomic factors on cognitive and non-cognitive educational outcomes," Investigaciones de Economía de la Educación volume 10, in: Marta Rahona López & Jennifer Graves (ed.), Investigaciones de Economía de la Educación 10, edition 1, volume 10, chapter 21, pages 413-438, Asociación de Economía de la Educación.
- Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
- Naoya Sueishi & Arihiro Yoshimura, 2017.
"Focused Information Criterion for Series Estimation in Partially Linear Models,"
The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 352-363, September.
- Naoya Sueishi & Arihiro Yoshimura, 2017. "Focused Information Criterion for Series Estimation in Partially Linear Models," The Japanese Economic Review, Springer, vol. 68(3), pages 352-363, September.
- Naoya Sueishi & Arihiro Yoshimura, 2014. "Focused Information Criterion for Series Estimation in Partially Linear Models," Discussion papers e-14-001, Graduate School of Economics Project Center, Kyoto University.
- Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Gildas Mazo & François Portier, 2021. "Parametric versus nonparametric: The fitness coefficient," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1344-1383, December.
- Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
- Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
- Gerda Claeskens & Fabrizio Consentino, 2008. "Variable Selection with Incomplete Covariate Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1062-1069, December.
- Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
More about this item
Keywords
Counting processes; Event history; Goodness of fit processes; Linear hazard regression model; Semiparametric;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:29:y:2023:i:2:d:10.1007_s10985-021-09535-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.