IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v55y2001i3p367-376.html
   My bibliography  Save this article

Efficiency Considerations in the Additive Hazards Model with Current Status Data

Author

Listed:
  • D. Ghosh

Abstract

For current status data, LIN, OAKES and Ying (1998) proposed a procedure for estimation of the regression parameters in the additive hazards model that makes clever use of martingale theory. However, one of the outstanding problems posed in the paper was the issue of efficient estimation, as their estimators do not attain the semiparametric information bound. In this paper, we explore this issue and provide a characterization of the NPMLE. We conduct efficiency comparisons between the NPMLE and the procedure of LINet al. (1998) analytically and numerically through analysis of a dataset from a tumorigenicity experiment.

Suggested Citation

  • D. Ghosh, 2001. "Efficiency Considerations in the Additive Hazards Model with Current Status Data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 55(3), pages 367-376, November.
  • Handle: RePEc:bla:stanee:v:55:y:2001:i:3:p:367-376
    DOI: 10.1111/1467-9574.00175
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9574.00175
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9574.00175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junlong Li & Chunjie Wang & Jianguo Sun, 2012. "Regression analysis of clustered interval-censored failure time data with the additive hazards model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 1041-1050, December.
    2. Li, Jinqing & Ma, Jun, 2019. "Maximum penalized likelihood estimation of additive hazards models with partly interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 170-180.
    3. Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
    4. Xiaoguang Wang & Ziwen Wang, 2021. "EM algorithm for the additive risk mixture cure model with interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 91-130, January.
    5. Debashis Ghosh, 2004. "Nonparametric and semiparametric inference for models of tumor size and metastasis," The University of Michigan Department of Biostatistics Working Paper Series 1035, Berkeley Electronic Press.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:55:y:2001:i:3:p:367-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.