IDEAS home Printed from https://ideas.repec.org/p/bep/jhubio/1042.html
   My bibliography  Save this paper

Bayesian Geostatistical Design

Author

Listed:
  • Peter Diggle

    (Medical Statistics Unit, Lancaster University, UK & Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health)

  • Soren Lophaven

    (Informatics and Mathematical Modelling, Technical University of Denmark)

Abstract

This paper describes the use of model-based geostatistics for choosing the optimal set of sampling locations, collectively called the design, for a geostatistical analysis. Two types of design situations are considered. These are retrospective design, which concerns the addition of sampling locations to, or deletion of locations from, an existing design, and prospective design, which consists of choosing optimal positions for a new set of sampling locations. We propose a Bayesian design criterion which focuses on the goal of efficient spatial prediction whilst allowing for the fact that model parameter values are unknown. The results show that in this situation a wide range of inter-point distances should be included in the design, and the widely used regular design is therefore not the optimal choice.

Suggested Citation

  • Peter Diggle & Soren Lophaven, 2004. "Bayesian Geostatistical Design," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1042, Berkeley Electronic Press.
  • Handle: RePEc:bep:jhubio:1042
    Note: oai:bepress.com:jhubiostat-1042
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1042&context=jhubiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Le, Nhu D. & Zidek, James V., 1992. "Interpolation with uncertain spatial covariances: A Bayesian alternative to Kriging," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 351-374, November.
    2. Hååvard Rue & Hååkon Tjelmeland, 2002. "Fitting Gaussian Markov Random Fields to Gaussian Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 31-49, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    2. Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
    3. Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
    4. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    5. White, Gentry & Ghosh, Sujit K., 2009. "A stochastic neighborhood conditional autoregressive model for spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3033-3046, June.
    6. Stephan R. Sain & Reinhard Furrer, 2018. "Comments on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 545-548, September.
    7. Steinsland, Ingelin, 2007. "Parallel exact sampling and evaluation of Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2969-2981, March.
    8. Hossein Boojari & Majid Khaledi & Firoozeh Rivaz, 2016. "A non-homogeneous skew-Gaussian Bayesian spatial model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 55-73, March.
    9. Zammit-Mangion, Andrew & Rougier, Jonathan, 2018. "A sparse linear algebra algorithm for fast computation of prediction variances with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 116-130.
    10. Morales-Oñate, Víctor & Crudu, Federico & Bevilacqua, Moreno, 2021. "Blockwise Euclidean likelihood for spatio-temporal covariance models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 176-201.
    11. Litvinenko, Alexander & Sun, Ying & Genton, Marc G. & Keyes, David E., 2019. "Likelihood approximation with hierarchical matrices for large spatial datasets," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 115-132.
    12. Isa Marques & Thomas Kneib & Nadja Klein, 2022. "Mitigating spatial confounding by explicitly correlating Gaussian random fields," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    13. Hongxing Li & Charlotte D. Smith & Li Wang & Zheng Li & Chuanlong Xiong & Rong Zhang, 2019. "Combining Spatial Analysis and a Drinking Water Quality Index to Evaluate Monitoring Data," IJERPH, MDPI, vol. 16(3), pages 1-9, January.
    14. Hartman, Linda & Hossjer, Ola, 2008. "Fast kriging of large data sets with Gaussian Markov random fields," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2331-2349, January.
    15. Idris A. Eckley & Guy P. Nason & Robert L. Treloar, 2010. "Locally stationary wavelet fields with application to the modelling and analysis of image texture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 595-616, August.
    16. Sun, Xiaoqian & He, Zhuoqiong & Kabrick, John, 2008. "Bayesian spatial prediction of the site index in the study of the Missouri Ozark Forest Ecosystem Project," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3749-3764, March.
    17. Stefano F. Tonellato, 2005. "Identifiability Conditions for Spatio-Temporal Bayesian Dynamic Linear Models," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 81-101.
    18. Verzelen, Nicolas, 2010. "Data-driven neighborhood selection of a Gaussian field," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1355-1371, May.
    19. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    20. Peter W Gething & Anand P Patil & Simon I Hay, 2010. "Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:jhubio:1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.